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Santa Claus meets Makespan and Matroids: Algorithms and Reductions∗

Étienne Bamas† Alexander Lindermayr‡ Nicole Megow‡ Lars Rohwedder§

Jens Schlöter‡

Abstract

In this paper we study the relation of two fundamental problems in scheduling and fair allocation: makespan
minimization on unrelated parallel machines and max-min fair allocation, also known as the Santa Claus
problem. For both of these problems the best approximation factor is a notorious open question; more
precisely, whether there is a better-than-2 approximation for the former problem and whether there is a
constant approximation for the latter.

While the two problems are intuitively related and history has shown that techniques can often be
transferred between them, no formal reductions are known. We first show that an affirmative answer to
the open question for makespan minimization implies the same for the Santa Claus problem by reducing the
latter problem to the former. We also prove that for problem instances with only two input values both
questions are equivalent.

We then move to a special case called “restricted assignment”, which is well studied in both problems.
Although our reductions do not maintain the characteristics of this special case, we give a reduction in a
slight generalization, where the jobs or resources are assigned to multiple machines or players subject to a
matroid constraint and in addition we have only two values. Since for the Santa Claus problem with matroids
the two value case is up to constants equivalent to the general case, this draws a similar picture as before:
equivalence for two values and the general case of Santa Claus can only be easier than makespan minimization.
To complete the picture, we give an algorithm for our new matroid variant of the Santa Claus problem using a
non-trivial extension of the local search method from restricted assignment. Thereby we unify, generalize, and
improve several previous results. We believe that this matroid generalization may be of independent interest
and provide several sample applications.

As corollaries, we obtain a polynomial-time (2−1/nϵ)-approximation for two-value makespan minimization
for every ϵ > 0, improving on the previous (2 − 1/m)-approximation, and a polynomial-time (1.75 + ϵ)-
approximation for makespan minimization in the restricted assignment case with two values, improving the
previous best rate of 1 + 2/

√
5 + ϵ ≈ 1.8945.
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1 Introduction

In this paper we study two prominent topics from scheduling theory: the SantaClaus problem and unrelated-
machine Makespan minimization; in particular, two notoriously difficult questions about polynomial-time
approximations that are considered major open problems in the field [6, 28,32,33].

In the SantaClaus problem (also known as max-min fair allocation), we are given a set of m players P and
a set of n indivisible resources R. Each resource j ∈ R has unrelated values vij ≥ 0 for each player i ∈ P . The
task is to find an assignment of resources to players with the objective to maximize the minimum total value
assigned to any player. This objective is arguably the best from the perspective of fairness for each individual
player. The name “Santa Claus” is due to Bansal and Sviridenko [7] who stated this problem as Santa’s task to
distribute gifts to children in a way that makes the least happy child maximally happy. From the perspective of
approximation algorithms, it is entirely plausible that there exists a polynomial-time constant approximation for
the problem, with the best lower bound assuming P ̸=NP being only 2 [8]. On the other hand, the state-of-the-
art is “only” a polynomial-time nϵ-approximation for any constant ϵ > 0, a remarkable result by Chrakabarty,
Chuzhoy, and Khanna [9], who also give a polylogarithmic approximation in quasi-polynomial time using the
same approach. Positive evidence towards a constant approximation comes from an intensively studied special
case, called restricted assignment case of SantaClaus, restricted SantaClaus in short. Here, the values satisfy
vij ∈ {0, vj}, or equivalently each resource has one fixed value, but can only be assigned to a specific subset of
players. The inapproximability from the general case still holds for restricted SantaClaus, even for instances
with only two non-zero values, introduced formally later. The first constant approximations have been achieved
first by randomized rounding of the so-called configuration LP combined with Lovász Local Lemma (LLL) [7,16]
and later using a sophisticated local search technique analyzed against the configuration LP [2,3,12,13,15,19,26].
The local search method originates from work on hypergraph matchings by Haxell [20].

The “dual” problem with a min-max objective is the equally fundamental and prominent problem of scheduling
jobs on unrelated parallel machines so as to minimize the maximum completion time, that is, the makespan. For
brevity we refer to this as the Makespan problem. Formally, we are given a set of m machines M and a set of n
jobs J . Every job j ∈ J has size (processing time) pij ≥ 0 on machine i ∈M . The task is to find an assignment
of jobs to machines that minimizes the maximum load over all machines. Here, the load of a machine is the
total size of jobs assigned to that machine. Lenstra, Shmoys and Tardos [25] gave a beautiful 2-approximation
algorithm based on rounding a sparse vertex solution of the so-called assignment LP (a simpler relaxation than
the configuration LP). The rounding has been slightly improved to the factor 2−1/m [29], but despite substantial
research efforts, this upper bound remains undefeated. The best lower bound on the approximability assuming
P̸=NP is 3/2 [25]. Similar to the SantaClaus problem, the restricted assignment case with pij ∈ {pj ,∞} has also
been studied extensively for the Makespan problem, referred to as restricted Makespan. However, the barrier
of 2 has been overcome only partially even in this setting: with non-constructive integrality gap bounds [31] and
better-than-2 approximations in quasi-polynomial time [22] and for the special case of two sizes [1, 10].

Intuitively, the two problems are related and in the community the belief has been mentioned that
SantaClaus admits a constant approximation if (and only if) Makespan admits a better-than-2 approximation;
see e.g., [5,6]. Indeed, techniques for one problem often seem to apply to the other one, but no formal reductions
are known. We give some examples for such parallels:
(i) The configuration LP, see [7], is the basis of all mentioned results for the restricted assignment variant of

both problems.
(ii) The local search technique by Haxell [20] for hypergraph matching has been adopted and shown to be very

powerful for both problems. First, it has been picked up for restricted SantaClaus [2, 3, 15, 26] and later
it has been further developed for restricted Makespan [1, 22,31].

(iii) Chakrabarty, Khanna and Li [10] transferred the technique of rounding the configuration LP via LLL used
for restricted SantaClaus [16, 18] to restricted Makespan with two job sizes and thereby provided the
first slightly-better-than-two approximation in polynomial time.

(iv) The reduction for establishing hardness of approximation less than 2 for SantaClaus [8] is essentially the
same as the earlier construction for the 3/2-inapproximability for Makespan [25].

(v) The LP rounding by Lenstra et al. [25] achieves an additive approximation within the maximum (finite)
processing time pmax, i.e., the makespan is at most OPT+pmax, which can be translated into a multiplicative
2-approximation. Bezakova and Dani [8] show the same additive approximation for SantaClaus: each
player is guaranteed a value at least OPT − vmax. Note that for the max-min objective this does not
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translate into a multiplicative guarantee.

In this paper, we confirm (part of) the conjectured relation between the Makespan and the SantaClaus
problem with respect to their approximability. As our first main result we prove that a better-than-2
approximation for Makespan implies an O(1)-approximation for SantaClaus.

Theorem 1.1. For any α ≥ 2, if there exists a polynomial-time (2 − 1/α)-approximation for Makespan, then
there exists a polynomial-time (α+ ϵ)-approximation for SantaClaus for any ϵ > 0.

For values of α < 2, a (2− 1/α)-approximation for the Makespan problem is NP-complete and the implication
would still hold, even though clearly uninteresting. Similarly to this, we will restrict our attention in later theorems
to non-trivial values of α.

We prove also the reverse direction for the two-value case, in which all resource values are vij ∈ {0, u, w}, for
some u,w ≥ 0, and all processing times are pij ∈ {u,w,∞}, for some u,w ≥ 0, respectively. This implies the
equivalence of Makespan and SantaClaus in that case.

Theorem 1.2. For any α ≥ 2, there exists an α-approximation algorithm for two-value SantaClaus if and only
if there exists a (2− 1/α)-approximation algorithm for two-value Makespan.

We then move to the restricted assignment case, where one might hope to unify previous results and possibly
infer new results by showing a similar relationship. Using our techniques, however, this seems unclear, since
the aforementioned reductions do not maintain the characteristics of the restricted assignment case. However, it
turns out to be useful to consider a matroid generalization of our problems. Towards this, we briefly introduce
the notion of a matroid. A matroid is a non-empty, downward-closed set system (E, I) with ground set E and a
family of subsets I ⊆ 2E , which satisfies the augmentation property:

(1.1) if I, J ∈ I and |I| < |J |, then I + j ∈ I for some j ∈ J \ I.

Given a matroidM = (E, I), a set I ⊆ E is called independent if I ∈ I, and dependent otherwise. An inclusion-
wise maximal independent subset is called a basis ofM, and we denote the set of bases by B(M). With a matroid
M, we associate a rank function r : 2E → Z≥0, where r(X) describes the maximal cardinality of an independent
subset of X. Typical examples of matroids include: linearly independent subsets of some given vectors, acyclic
edge sets of a given undirected graph, and subsets of cardinality bounded by some given value. A polymatroid
is the multiset analogue of a matroid. We refer to Section 1.3 for further definitions and to [27] for a general
introduction to matroids.

Moving back to our two problems, we first introduce the restricted resource-matroid SantaClaus problem,
where we consider again an input of resources and players and each resource j has a value vj for each player i as
in the restricted assignment case. In the matroid variant, however, each resource can potentially be assigned to
multiple players, subject to a (poly-)matroid constraint; more precisely, we require the set of players, which we
assign the resource to, to be a basis of a given resource-specific (poly-)matroid, and the resource contributes to
the total value of each of these players. As one may also consider a more general variant with unrelated values vij
we use the phrase restricted to emphasize our restricted assignment model. Similarly, we define a restricted job-
matroid Makespan problem by replacing the max-min with a min-max objective and asking for an assignment
of each job to a set of machines which forms a basis in the job’s matroid.

Davies, Rothvoss and Zhang [15] recently introduced a closely related matroid variant of restricted
SantaClaus. Their variant, however, is significantly more restrictive and can be summarized as follows: they
allow a single infinite value matroid-resource and a set of “small value” traditional resources (without the matroid
generalization). For this variant they give a (4 + ϵ)-approximation algorithm.

First, we show that in our general variant an analogous relation to Theorem 1.2 holds.

Theorem 1.3. For any α ≥ 2, there exists a polynomial-time α-approximation algorithm for the restricted two-
value resource-matroid SantaClaus problem if and only if there exists a polynomial-time (2−1/α)-approximation
algorithm for the restricted two-value job-matroid Makespan problem.

Since the matroid version is a new problem, we cannot directly infer any approximation results for it. Hence,
we develop a polynomial-time approximation algorithm for the restricted resource-matroid SantaClaus problem.
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Theorem 1.4. For any ϵ > 0, there exists a polynomial-time (8 + ϵ)-approximation algorithm for the restricted
resource-matroid SantaClaus problem and a (4 + ϵ)-approximation in the two-value case.

This is achieved via a non-trivial generalization of the commonly used local search technique for restricted
assignment, see Section 1.2 for a technical overview. We prove the variant for two values and then give a reduction
from the general case, see Lemma 3.1. Apart from the curiosity-driven motivation for a matroid generalization
of the classical scheduling problems and the usage through our reductions, we present in Section 1.1 sample
applications where such a variant arises.

We note that some special cases of the job-matroid Makespan problem have already been considered in
the past. Indeed, Azar et al. [4] give a 2-approximation for the Makespan problem where each job j needs
to be processed by kj different machines, which is the special case where each job is equipped with a uniform
matroid1. Here, the machines are considered unrelated hence the processing times pij can be arbitrary. We give
a generalization of the result by Azar et al. which allows an arbitrary matroid for each job.

Theorem 1.5. There exists a polynomial-time algorithm for the unrelated job-matroid Makespan problem which
returns a solution of value at most min{2OPT,OPT + pmax}, where pmax = maxi∈M,j∈J,pij<∞ pij is the biggest
bounded processing time.

The proof of this result can be found in Appendix C. It is based on a non-trivial generalization of a rounding
result by Shmoys and Tardos [30]. Interestingly, Azar et al. [4] mention that the rounding theorem of Lenstra,
Shmoys, Tardos [25] cannot be applied in the matroid setting, because it crucially relies on a counting argument
which does not hold anymore. Fortunately, the result in [30] does not need this argument. As in the simple job
case, we obtain a similar theorem for the resource-matroid SantaClaus problem.

Theorem 1.6. There exists a polynomial-time algorithm for the unrelated resource-matroid SantaClaus
problem which returns a solution of value at least OPT − vmax, where vmax = maxi∈M,j∈J vij is the biggest
resource value.

The proof of this last theorem can easily be obtained from a rounding theorem proved in Section 3 (Theorem 3.1).
To conclude this section, we state two immediate implications of our results to the state-of-the-art of the

Makespan problem.

Corollary 1.1. For every ϵ > 0, there exists a polynomial-time (1.75 + ϵ)-approximation algorithm for the
restricted two-value job-matroid Makespan problem.

Corollary 1.1 holds in particular true for the restricted Makespan problem, thus improving upon the previously
best polynomial-time approximation rate of 1 + 2/

√
5 + ϵ ≈ 1.8945 [1]. The corollary follows from combining

Theorems 1.3 and 1.4. In their work on restricted SantaClaus, Davies et al. [15] managed to reduce the technical
complexity of previous works, which handled complicated path decompositions explicitly, using a cleaner matroid
abstraction. Our algorithm shows that such a simplification is also possible for restricted two-value Makespan,
which was not clear before.

Corollary 1.2. For every ϵ > 0, there exists a polynomial-time (2 − 1/nϵ)-approximation algorithm and a
quasi-polynomial-time (2− 1/polylog(n))-approximation algorithm for two-value Makespan.

This result follows from the algorithm of Chakrabarty et al. [9] and Theorem 1.2, and improves upon the best-
known polynomial-time approximation factor of 2− 1/m for m machines [29].

1.1 Applications The job-matroid Makespan problem already has some known applications in data retrieval
mentioned in [4]. To complement this, we lay out three additional applications of our matroid generalization.

First, consider service centers that offer various types of services to clients. The specific service that such
a center offers has some value associated with it and it can only be provided to a limited number of clients, a
typical constraint appearing for example in capacitated facility location problems. Furthermore, a service center
can serve only clients that are located in the same region and a client can only receive a specific type of service

1A uniform matroid M = (X, I) of rank r has as independent sets all subsets of X of cardinality at most r.
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once, i.e., by a single center, since receiving the same service twice yields no additional value. The services should
be assigned to the clients in such a way that all clients are treated “fairly” with respect to their total value for
the services. That is, we want to maximize the total value for the least happy client. This can be modeled
as a resource-matroid SantaClaus problem with clients being players and services (one per service type) being
resources. The set of clients that can receive a particular type of service can be modeled as a transversal matroid2.
In the classical (restricted) SantaClaus problem, one cannot express the constraint that a client can receive
each type of service only once.

As a second example, consider a program committee (PC) for a scientific conference. We would like to
assign papers to PC members such that the workload is balanced in the sense that we minimize the maximum
workload over all PC members. We will view this as a Makespan problem with PC members being machines and
submissions being jobs. PC members have declared which submissions they would agree to assess. Submissions
may be of different types such as “short papers” or “regular paper” with varying workloads. In a typical conference,
each submission needs to be assessed three times and obviously it is important that this is done by different PC
members; hence, we cannot simply model this as a traditional restricted assignment problem where we duplicate
a job three times. However, it is easy to model this using matroids by having one basis for each triple of PC
members that agree to assess this submission, i.e., we have a job-matroid Makespan problem with a uniform
matroid of rank 3.

Our third illustration is a job-matroid Makespan problem, in which a graphic matroid3 allows us to model
connectivity requirements. In cloud computing and data centers, a number of servers is available to execute
multiple applications at the same time. Each application is executed on a subset of servers and these servers
must be connected to allow for communication. We assume that these connections are direct in the sense that
an application may not use additional servers as Steiner nodes. We need to reserve a certain bandwidth for each
application’s communication, which depends on characteristics of the application itself. The task is to select
carefully on which links to reserve the bandwidth for each individual application such that load on these links is
balanced, more precisely, we want to select links to minimize the maximum total bandwidth requirement imposed
on any link. This can be modelled as job-matroid Makespan problem with jobs being applications, machines
being the edges (links) in a graph formed by the allocated servers, and the load (processing time) being the
requested bandwidth of the application. The task is to choose for each job a spanning tree, that is, a basis in the
job-dependent graphic matroid such that the maximum total bandwidth on any edge is minimized. This cannot
be modeled as classical Makespan or restricted assignment problem, since it cannot capture the structure of a
graphic matroid.

1.2 Algorithmic techniques Our main algorithmic contribution lies in a local search algorithm for the new
restricted resource-matroid SantaClaus problem, see Theorem 1.4. We give an overview of the method here,
its main technical merits, and how it relates to previous works. The specific local search method that we refer
to originates in an algorithmic proof for a hypergraph matching theorem by Haxell [20]. The theorem is a
generalization of Hall’s theorem for bipartite graphs to hypergraphs and Haxell’s proof can be thought of as a
very non-trivial extension of the augmenting path method in bipartite graphs. Asadpour et al. [3] made the
connection to restricted SantaClaus. In addition to a black-box reduction to the specific hypergraph matching
problem, they also reinterpreted Haxell’s method as a sophisticated algorithm for restricted SantaClaus.

Although not explicitly mentioned in earlier works, this new algorithm can be thought of as a generalization
of the typical augmentation algorithm for matroid partition: the core of the problem lies in the case where we
have two values for the resources, more precisely, either the value of a resource is infinitely large or it is a unit
value 1. This case is up to constants equivalent to the general problem, see e.g., [7]. Observe now the following
structure: we need to select a subset IM of players such that there exists a left-perfect matching of IM to the
infinite-value resources and such that there exists a b-matching of all players in P \IM to the small resources (each
player is matched to b resources, each resource to at most one player), where b has to be maximized. The sets IM
that fulfill the condition above form a transversal matroid, but unfortunately the sets of players for which there
is a b-matching does not (for a fixed b > 1). If they would actually form a matroid, then the problem could easily

2Given a bipartite graph G = (J ∪ S,E), a set S′ ⊆ S is independent in the transversal matroid M = (S, I) if there is a matching

in G which covers S′.
3Given an undirected graph G = (V,E), the graphic matroid M = (E, I) has as independent sets the cycle-free edge sets (forests),

i.e., I = {F ⊆ E : F is acyclic in G}.
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be solved by matroid partition, where given two matroids M1 = (E, I1),M2 = (E, I2) over the same ground
set, we want to find two independent sets I1 ∈ I1, I2 ∈ I2 that partition the ground set, i.e., I1∪̇I2 = E (here
we focus on the variant with two matroids, although also more than two matroids may be allowed). Matroid
partition–and the equivalent problem of matroid intersection–can be solved in polynomial time by an augmenting
path algorithm that repeatedly increases the union of I1 and I2 by first swapping elements between these two
sets. Although, as mentioned above, the b-matching does not have a matroid structure, the algorithmic paradigm
of swapping elements between matching and b-matching in order to increase their union still works once we allow
approximation of b.

The constraint on set IM forms a transversal matroid (implied by the infinite-value resources) and Davies
et al. [15] then showed that the algorithmic idea generalizes to arbitrary matroid structures. In their problem,
however, the b-matching remains the same without further abstraction, whereas in our further generalization, we
embrace the polymatroid structure of the b-matching. We now require instead of a b-matching that the multiset
b · (P \ IM ) (having b copies for each element in P \ IM ) is in some given polymatroid. We believe that this
abstraction is the logical conclusion for this line of research.

Although a seemingly natural extension, it is highly non-trivial to generalize the existing algorithm to our
setting. Firstly, there are conceptional issues that come from the fact that previous methods revolve around
reassigning resources or jobs and those do not exist explicitly in our polymatroid. Secondly, a serious technical
problem comes from the lack of a certificate of infeasibility. The design of the algorithm is closely connected to a
certificate of infeasibility, which is provided (for analysis’ sake) in case the algorithm fails. For example, in matroid
partition when the augmenting path algorithm fails, one can derive a set X such that r1(X)+r2(X) < |X|, where
r1 and r2 are the rank functions of the matroids [24]. This clearly proves infeasibility. In applications of the method
to restricted SantaClaus or Makespan, as a certificate of infeasibility a dual solution to the configuration LP
is usually constructed. However, neither of the two ideas generalize to our setting, as we will lay out in Section 5.
Hence, we come up with a novel certificate, which may be of independent interest.

1.3 Definitions and notation We write Oϵ(·) as the standard O-notation, where we suppress any factors
that are functions in only ϵ. For a set X and an element i we write X + i := X ∪{i}. Similarly, X − i := X \ {i}.

Let E be a universe. For a vector x ∈ RE , we write x(e) for the entry of x corresponding to e ∈ E,
and x(S) =

∑
e∈S x(e). For some X ⊆ E, we write b · X as the vector y ∈ ZE with y(e) = b for e ∈ X

and y(e) = 0 for e /∈ X. A set function f : 2E → R is submodular if for all subsets A,B ⊆ E holds
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), and monotone if for all A ⊆ B ⊆ E holds f(A) ≤ f(B). Let f : 2E → Z≥0

be a monotone submodular integer function with f(∅) = 0. An integer polymatroid over E associated with f is
defined as

P = {x ∈ ZE
≥0 : x(S) ≤ f(S) ∀S ⊆ E}.

In the following we always refer to integer polymatroids when talking about polymatroids. A polymatroid can
be interpreted as the multiset generalization of a matroid and most concepts of matroids translate easily to
polymatroids. Every element x ∈ P can be seen as an independent multiset in which an element e ∈ E appears
with multiplicity x(e). A polymatroid is also downward-closed, that is, x ∈ P implies y ∈ P for any 0 ≤ y ≤ x,
and satisfies the augmentation property, that is, if x, y ∈ P with x(E) < y(E), then there is some e ∈ E such that
x′ ∈ P with x′(e) = x(e) + 1 and x′(e′) = x(e′) for all e′ ∈ E − e. In particular, any matroid is a polymatroid.

A basis of a polymatroid P is an element x ∈ P which satisfies f(E) = x(E), meaning that all bases have
the same cardinality (in terms of multisets). We denote the set of bases of P by B(P). For a given polymatroid
P and a constant k ∈ Z≥0, the set {x ∈ P : x(e) ≤ k ∀e ∈ E} is again a polymatroid.

For a given polymatroid P of the submodular function f , and some vector z ∈ ZE
≥0 with x ≤ z for all x ∈ P,

we define the dual polymatroid P of P with respect to z via the set function g with

g(S) = z(S) + f(E \ S)− f(E)

for every S ⊆ E. This function is submodular, monotone and satisfies g(∅) = 0, hence this definition is well-
defined. Note that if x ∈ B(P) it follows g(E) = z(E) + f(∅)− f(E) = z(E)− x(E), and therefore z − x ∈ B(P).

If a polymatroid P associated with a function f is given as an input for a problem, we assume that it is
represented in form of a value oracle for f . We can test whether some vector x is in P by checking whether the
minimum of the submodular function f(S)− x(S) is non-negative, which can be done with a polynomial number
of value queries to f . We refer for an extensive overview over polymatroids to Schrijver [27, chapters 44 - 49].
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We now give precise definitions of the matroid problems we consider.

Definition 1.1. (Resource-matroid SantaClaus) In the restricted resource-matroid SantaClaus problem,
there are sets of m players P and n resources R with values vj for all j ∈ R. Further, for every resource j ∈ R
there is an integer polymatroid Pj over P . The task is to allocate each resource j ∈ R to a basis xj ∈ B(Pj) and
let each player i profit from the resource j with value vj · xj(i). The goal is to maximize the minimum total value
any player receives, i.e., mini∈P

∑
j∈R vj · xj(i) .

Definition 1.2. (Job-matroid Makespan) In the restricted job-matroid Makespan problem, there are sets
of m machines M and n jobs J with sizes pj for all j ∈ J . Further, for every job j ∈ J there is an integer
polymatroid Pj over M . The task is to allocate each job j ∈ J to a basis xj ∈ B(Pj) which means that j
contributes load pj · xj(i) to the total load of machine i. The goal is to minimize the maximum total load over all
machines, i.e., maxi∈M

∑
j∈J pj · xj(i) .

These new matroid allocation problems generalize the restricted assignment variants of SantaClaus and
Makespan, respectively. In fact, the matroid variant with a uniform matroid of rank 1 corresponds to the
respective traditional problem.

Note that in restricted resource-matroid SantaClaus it is equivalent to require that xj ∈ Pj for each resource
j instead of xj ∈ B(Pj), since we can always increase xj to reach a basis without making the solution worse. In
restricted job-matroid Makespan this is not the case.

Both matroid problems can be reduced to instances where the number of polymatroids is equal to the number
of distinct job sizes (resource values). This is because we can sum polymatroids associated with jobs (resources)
of equal size (value) to a single one, and then decompose a basis for such a merged polymatroid into bases for
the original polymatroids via polymatroid intersection. Formally, we get the following proposition. For a more
detailed explanation, see Appendix A.

Proposition 1.1. For any α ≥ 1, if there exists a polynomial-time α-approximation algorithm for restricted job-
matroid Makespan (resource-matroid SantaClaus) with h jobs (resources), then there exists a polynomial-time
α-approximation algorithm for restricted job-matroid Makespan (resource-matroid SantaClaus) with pj resp.
vj ∈ {w1, . . . , wh} and w1, . . . , wh ≥ 0.

2 Santa Claus and makespan reductions

In this section we present our first two reductions and prove Theorem 1.1 and Theorem 1.2. The precise statements
given in the following subsections imply these results. They are formulated as subroutines for a standard guessing
framework (see e.g. [21]), which we briefly explain here. Consider a SantaClaus instance I for which we want to
compute an α-approximate solution. We first guess OPT(I) with some variable T using binary search as follows.
For some guess T , we scale down all values of I by factor T and obtain I ′. Then, we prove that if OPT(I) ≥ T
(and OPT(I ′) ≥ 1), our subroutine finds a solution for I ′ with an objective value of at least 1/α. If we do not
obtain such a solution, we can conclude OPT(I) < T and safely repeat with a smaller guess. Otherwise, we repeat
with a larger guess. After establishing T = OPT(I), the subroutine gives us a solution with an objective value of
at least T/α. For Makespan one can design an analogous procedure.

2.1 From Santa Claus to makespan minimization In this section, we present an approximation preserving
reduction (up to a factor of 1+ϵ) from SantaClaus to Makespan. More precisely, we show the following result.

Lemma 2.1. For any α ≥ 2 and ϵ > 0, given an instance I of SantaClaus with OPT(I) ≥ 1, we can construct
in polynomial time an instance I ′ of Makespan such that, given a (2− 1/α)-approximate solution for I ′, we can
compute in polynomial time a solution for I with an objective value of at least 1/(α+ ϵ).

This lemma then implies Theorem 1.1 via the guessing framework. We split the proof of Theorem 2.1 into
two parts (cf. Lemmas 2.2 and 2.3). First, we show that we can define a polynomial number of configurations for
each player, which represent different options this player has. We show that there is a nearly optimal solution,
up to a factor of 1 + ϵ, that only uses these configurations.

Second, we reduce this problem to Makespan without losing additional constants. That is, we present a
reduction proving that a (2 − 1/α)-approximation for Makespan implies an α-approximation for SantaClaus
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restricted to polynomially many configurations. Intuitively, the fact that we can enumerate the list of possible
optimal configurations per player enables us to create gadgets for every configuration in the constructed
Makespan instance which we exploit when reducing solutions.

Santa Claus with polynomially many configurations. Consider a SantaClaus instance with players
P and n resources R. We define the set of value types as T = {vij : i ∈ P, j ∈ R}, which contains all distinct
resource values that occur in the instance. We call a function c : T → {0, 1, . . . , n} a configuration, and define the
total value of c as |c| =

∑
v∈T c(v) · v. One can also see a configuration as a multiset of value types.

Given a configuration ci for a player i of a SantaClaus instance I, we say that a resource assignment
A = {Ai}i∈P for I that assigns the set of resources Ai to player i matches the configuration ci if |{j ∈ Ai : vij =
v}| = ci(v) for every value type v ∈ T .

We use Ci to refer to a set of configurations for a player i ∈ P and call C = {Ci}i∈P a collection of configurations.
A resource assignment A matches a collection of configurations C if, for each player i, there exists a configuration
c ∈ Ci such that Ai matches c. Given a SantaClaus instance I and a collection of configurations C = {Ci}i∈P ,
we use OPTC(I) to refer to the optimal objective value for instance I among those solutions that match C.

The main result of this section is the following lemma.

Lemma 2.2. For every ϵ > 0 and a given instance I of SantaClaus with OPT(I) ≥ 1, we can construct a
rounded instance I ′ with a collection of configurations C such that the number of configurations for each player is
polynomial in the input size of I and OPTC(I

′) ≥ 1/(1 + ϵ).
Further, every solution for I ′ of objective value T is a solution for I with objective value at least T .

The lemma essentially allows us to consider only solutions that partially match the constructed collection
of configurations C. If we find such a solution that α-approximates OPTC(I

′), we immediately get a (α + ϵ)-
approximation for OPT(I).

To prove the lemma, we employ several rounding techniques and enforce a certain monotonicity condition on
the configurations. This allows us to reduce the number of configurations per player to a polynomial while still
guaranteeing OPTC(I

′) ≥ 1/(1 + ϵ). For a full proof, we refer to Appendix B.
Reduction to makespan minimization. We prove the following lemma which, together with Lemma 2.2,

implies Lemma 2.1.

Lemma 2.3. Let I be an instance of SantaClaus and let C be a collection of configurations with OPTC(I) ≥ 1.
For any α ≥ 1, we can construct in polynomial time an instance I ′ of Makespan such that, given a (2− 1/α)-
approximate solution for I ′, we can compute in polynomial time a solution for I with value at least 1/α. The
running times are polynomial in the size of (I, C).

We first give some intuition for the reduction of the lemma. Assume for simplicity that every configuration
in C has value 1. We want to construct aMakespan instance with an optimal makespan equal to 1. Exploiting the
polynomial number of configurations, we introduce configuration-machines for every player and every configuration
of that player. By using a gadget structure, we ensure that every solution for the Makespan instance “selects”
one configuration-machine for each player, which we call the player-machine. This is done by forcing an extra
(selection-)load of 1 on exactly one configuration-machine for that player. The other configuration-machines
will just be able to absorb all other jobs that can be placed on the machine, so we assume that they do so
and ignore them. Intuitively, the player-machine determines the configuration which we (partially) use for the
player when transferring a solution back to the SantaClaus instance. To this end, we encode the corresponding
configuration c of the player-machine by introducing for every v ∈ T a total of c(v) configuration-jobs with size
v on that machine. For every resource we also introduce a resource-machine, on which only configuration-jobs of
the same value type as the corresponding resource can be placed, with size 1. In an optimal solution of makespan
1, no configuration-job can be placed on a player-machine due to the selection-load. This means that all these
jobs have to be placed on the resource-machines instead. Since each resource-machine can absorb at most one job,
we can interpret the placement of the configuration jobs as a resource assignment for the SantaClaus instance
that matches the configuration of the player-machines. This, however, only works for optimal solutions.

To better understand the connection between approximate solutions, imagine an initial state where all
configuration-jobs are placed on their player-machines in theMakespan instance, and all resources are unassigned
in the SantaClaus instance. This means that all player-machines have a total load of 1 + |c| = 2 (observe that
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player 1 player 2

resource 1 res. 2 res. 3 res. 4

v22
v23

v24 = v23

(a) SantaClaus instance I. Players are visualized
by smileys and resources by gifts.

j1

m1
c1 m1

c2

1 1

j2

m2
c3 m2

c4

J2
c4,v22

J2
c4,v23

1 1

v23
|c4|

v22
|c4|

m1 m2 m3 m4

1 1

(b) Makespan instance I′. Machines are visualized by squares with a gear and
jobs by circles.

Figure 1: The construction used in Lemma 2.3. In both pictures an edge indicates that an item has a non-trivial value
for an entity. Note that v23 = v24 and thus resources 3 and 4 belong to the same value class of player 2. Thus, the
configuration-jobs in J2

c4,v23 have edges to both m3 and m4. The given configuration collections are C1 = {c1, c2} and
C2 = {c3, c4}, and the support of configuration c4 is given by c4(v23) = 2 and c4(v22) = 1.

|c| = 1 is caused by the configuration-jobs) and all players have a total value of 0. Now, a player can gain a resource
by moving a suitable configuration-job away from her player-machine to a resource-machine. Since, even in a
better-than-2 approximation for the Makespan instance, a resource-machine can absorb at most one job, we can
again interpret this as the players competing for the resources via moving jobs away from their player-machines
to resource-machines. Therefore, in a (2−1/α)-approximation for the Makespan instance, a player must be able
to move jobs away from her player-machine of total size at least 1/α. But this means in our interpretation that
she receives resources of total value at least 1/α in the SantaClaus instance.

In the following, we formalize these ideas and prove Lemma 2.3. Fix an instance I of the SantaClaus
problem and a collection of configurations C for I with OPTC(I) ≥ 1. We proceed by constructing the Makespan
instance I ′ as follows:

1. Remove all configurations from C of value strictly less than 1.

2. For every player i introduce a player-job ji in I ′.

3. For every resource j introduce a resource-machine mj in I ′.

4. For every player i and every configuration c ∈ Ci introduce a configuration-machine mi
c in I ′, where the size of

the player-job ji is equal to 1 on every configuration-machine mi
c and ∞ on all other machines.

5. For every player i, every configuration c ∈ Ci and every value type v ∈ T introduce a set J i
c,v of c(v) many

configuration-jobs. A configuration-job in J i
c,v has size 1 on every resource-machine mj if resource j has value

type v for player i (i.e., vij = v), size v/|c| on the configuration-machine mi
c, and ∞ on all other machines.

Since we assumed that OPTC(I) ≥ 1, the first step does not affect OPTC(I). See Figure 1 for an example of
this reduction. We prove two auxiliary lemmas that imply Lemma 2.3.

Lemma 2.4. The optimal objective value of I ′ is at most 1.
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Proof. Fix a solution of I that is optimal among the solutions that match C. Consider a player i of instance I and
let c ∈ Ci be the selected configuration for player i in the given solution. Let Ai be the set of resources assigned
to player i. In the solution for I ′, we assign job ji to machine mi

c, giving it a load of 1. Further, we assign the
configuration-jobs J i

c,v of configuration c to resource-machines {mj : j ∈ Ai} such that every resource-machine
receives at most one job. Such an assignment must exist by the fact that configuration c is matched by the
fixed solution for I. For every configuration c′ ∈ Ci \ {c} we assign for all v ∈ T every configuration-job in
J i
c′,v to machine mi

c′ , giving those a load of
∑

v∈T c′(v) v
|c′| = 1. Since, in the given solution, every resource j

is assigned to at most one player i, and since we have assigned at most one configuration-job to machine mj ,
every resource-machine also has a load of at most 1. Hence, the makespan of the constructed solution for I ′ is at
most 1.

Lemma 2.5. For any α ≥ 1, given a solution for I ′ with a makespan of at most 2 − 1/α, we can construct in
polynomial time a solution for I where every player receives a total value of at least 1/α.

Proof. Given a solution for I ′ where every machine has a load of at most 2− 1/α, we construct a solution for I
as follows. Fix a player i and assume that ji is assigned to machine mi

c.
Let Ji be the set of configuration-jobs of configuration c of player i which are not assigned to mi

c. Thus,
every job in Ji is assigned to a resource-machine. Note that every resource-machine has at most one assigned
job, because every job has size of at least 1 on these machines. Let Ri be the set of resources for which the
corresponding resource-machines receive a job of Ji. We assign the resources Ri to player i in the solution for I.
The load contributed by configuration-jobs to machine mi

c is at most 1 − 1/α, because job ji is also assigned to
mi

c and has size 1. This implies that the total size of jobs in Ji for machine mi
c is at least

∑
j∈Ji:j∈Ji

c,v

v

|c|
≥

(∑
v∈T

c(v)
v

|c|

)
−
(
1− 1

α

)
= 1−

(
1− 1

α

)
=

1

α
.

Since |c| ≥ 1 by Step 1, we conclude that player i receives a total value of at least∑
j∈Ri

vij =
∑

j∈Ji:j∈Ji
c,v

v ≥
∑

j∈Ji:j∈Ji
c,v

v

|c|
≥ 1

α
.

A visualization of this argument is given in Figure 2.

2.2 Equivalence in the unrelated 2-value case In this section, we consider the two-value case of
SantaClaus and Makespan, where all resource values and job sizes are in {u,w, 0} and {u,w,∞}, respectively,
with u,w ≥ 0. Assume w.l.o.g. that u ≤ w. We prove that there exists an approximation preserving equivalence
between these two problems. We first restate the main result of this section, Theorem 1.2, for convenience.

Theorem 2.1. For any α ≥ 2, there exists an α-approximation algorithm for two-value SantaClaus if and only
if there exists a (2− 1/α)-approximation algorithm for two-value Makespan.

To prove this theorem, we prove two lemmas (Lemma 2.6 and Lemma 2.9) in the following subsections, one
for each direction. Then, a standard binary search argument completes the proof.

Makespan to Santa Claus. For the direction from two-value Makespan to two-value SantaClaus,
we show that similar ideas as in the reduction of Lemma 2.1 also work in the direction from Makespan to
SantaClaus if we only have two job sizes. This requires some additional ideas to ensure that we do not need to
introduce further resource values.

Lemma 2.6. Let I be an instance of the two-value Makespan problem with OPT(I) ≤ 1. For any α ≥ 2, we
can construct in polynomial time an instance I ′ of two-value SantaClaus such that, given an α-approximate
solution for I ′, we can compute in polynomial time a solution for I with an objective value of at most 2− 1/α.

Fix an instance I of the two-value Makespan problem with OPT(I) ≤ 1. First, we observe that we can
w.l.o.g. assume that w > OPT(I)/2. Otherwise, the algorithm by [25] gives us a solution of objective value at
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player 1 player 2

resource 1 res. 2 res. 3 res. 4

≥ 1
α

R1

(a) α-approximation in instance I.

j1

1

j2

m1 m2 m3 m4

≥ 1
α

J1

≤ 1− 1
α

(b) (2− 1/α)-approximation in instance I′.

Figure 2: Visualization of the argument for translating approximate solutions used in Lemma 2.5 applied to the example
given in Figure 1.

most OPT(I) + w ≤ 3/2 · OPT(I). Since α ≥ 2, this solution satisfies the lemma for every possible α. Thus, in
the following we assume w > OPT(I)/2.

We construct an instance I ′ of the two-value SantaClaus problem as follows:

1. Let k = min{⌊1/u⌋, n}, where n is the number of jobs in I. That is, k denotes the maximal number of small
jobs that can be assigned to a single machine in an optimal solution with OPT(I) ≤ 1. By our assumption
on the size w, we have that at most one big job can be placed on a single machine.

2. For every machine i we introduce a machine-player qi, one (large) resource ri, and k (small) re-
sources r1i , . . . , r

k
i . The value of the large resource ri for player qi is equal to w, the value of a small

resource rℓi for player qi is equal to u.

3. For every job j, we introduce a job-player q̂j . Furthermore, for every machine i, we set the value of resource
ri for q̂j to w if pij = w and to 0 otherwise. For a small resource rℓi we set the value for q̂j to w if pij = u
and to 0 otherwise.

Note that in I ′, every machine-player qi has only values in {0, u, w}, and every job-player q̂j has only values
in {0, w}. Thus, I ′ is a two-value SantaClaus instance. Further, for every machine the number of introduced
resources is at most the total number of jobs in I plus one, asserting that I ′ is of polynomial size. An illustration
of this construction is depicted in Figure 3.

We continue by proving two auxiliary lemmas on the constructed instance I ′ that together imply Lemma 2.6.
To this end, let t = w + k · u− 1 and note that t ≤ 1 holds by construction. Also, observe that

t = w + k · u− 1 ≤ w + k · u− k · u = w,

which implies w ≥ t. Using this, we prove the following lemma.

Lemma 2.7. OPT(I ′) ≥ t.

Proof. Fix an optimal solution of I and recall that we assume OPT(I) ≤ 1. In the following we construct a
solution for I ′.

Fix a machine i of instance I. If the given solution assigns a job j of size w to i, we assign resource ri to
job-player q̂j . If the given solution assigns a job j of size u to machine i, we assign an arbitrary unassigned small
resource rℓi to job-player q̂j . All yet unassigned resources are assigned to their corresponding machine-players.
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machine 1 machine 2

job 1 job 2 job 3 job 4

w
u
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w

(a) Two-value Makespan instance I.

q1

r1 r11 r31

w u u u

q2

r2 r12 r32

w u u u

q̂1 q̂2 q̂3 q̂4

w w

(b) Two-value SantaClaus instance I′.

Figure 3: The construction used in Lemma 2.6. In both pictures an edge indicates that an item has a non-trivial value for
an entity. Here, k is equal to 3.

We continue by separately proving that each player in instance I ′ receives a value of at least t, which implies
the lemma.

First, consider the job-players. Since every job j is assigned to exactly one machine in I, the job-player q̂j
receives exactly one resource in the constructed solution for I ′. These resources have value w for those players,
giving them a sufficiently large value of w ≥ t.

Next, we consider the machine-players. Fix a machine i. By our assumption that OPT(I) ≤ 1, every machine
i receives jobs of total size at most 1 in the solution for instance I. For our constructed solution to instance
I ′, this means that the subset Ni of resources ri, r

1
i , . . . , r

k
i that are not assigned to machine-player qi satisfies

vi(Ni) =
∑

r∈Ni
vr,qi ≤ 1. This implies that the value assigned to machine-player i is a least

w + k · u− vi(Ni) ≥ w + k · u− 1 = t,

which implies OPT(I ′) ≥ t.

We conclude the proof of Lemma 2.6 by showing the following lemma.

Lemma 2.8. For any α ≥ 2, given an α-approximate solution for I ′, we can construct in polynomial time a
solution for I where every machine has a makespan of at most 2− 1/α.

Proof. Consider an α-approximate solution for instance I ′. Such a solution must assign resources of value at least
OPT(I ′)/α to each player. By the previous lemma, OPT(I ′)/α ≥ t/α.

Clearly, in the given solution for I ′ every job-player q̂j receives at least one resource, as otherwise the objective
value would be zero. We modify the given solution in a way such that each job-player receives exactly one resource.
If a job-player receives more than one resource, we select an arbitrary resource and reassign all other resources
to their corresponding machine-players. Since the single resource that remains assigned to a job-player gives it a
value of w ≥ t, the modified solution for I ′ still has an objective value of at least t/α.

Now, we can construct a solution for I as follows. If one of the resources ri, r
1
i , . . . , r

k
i belonging to machine

i has been assigned to a job-player q̂j , we assign job j to machine i. By the above assumption this assignment is
well-defined.

It remains to argue about the load of every machine in I. Thus, fix a machine i. In the solution to instance
I ′, the corresponding machine-player receives resources of value at least t/α. This means that the subset Ni of
resources ri, r

1
i , . . . , r

k
i that are not assigned to machine-player qi satisfies

vi(Ni) ≤ w + k · u− t

α
= 1 + t− t

α
.
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(a) (2− 1/α)-approximation in instance I.

q1 q2

q̂1 q̂2 q̂3 q̂4
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α
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α

(b) α-approximation in instance I′.

Figure 4: Visualization of the argument for translating approximate solutions used in Lemma 2.8 applied to the example
given in Figure 3.

Since by construction t ≤ 1, we have t− t/α ≤ 1− 1/α, which implies vi(Ni) ≤ 2− 1/α. We conclude the proof
by observing that, by construction, the makespan of machine i in the constructed solution for I is exactly equal
to vi(Ni) ≤ 2− 1/α.

A visualization of the argument used in Lemma 2.8 is given in Figure 4.

Santa Claus to makespan. For the direction from two-value SantaClaus to two-value Makespan, we
show that we can apply a similar reduction as in Lemma 2.1. We do so by reducing the given SantaClaus
instance to an instance where the reduction does not introduce a third value. Further, we observe that, in the
two-value case, we only have a polynomial number of relevant configurations, so we do not have to reduce this
number and, thus, do not lose the additional factor of 1 + ϵ.

Lemma 2.9. Let I be an instance of the two-value SantaClaus problem with OPT(I) ≥ 1. For any α ≥ 2, we
can construct in polynomial time an instance I ′ of two-value Makespan such that, given an (2−1/α)-approximate
solution for I ′, we can compute in polynomial time a solution for I with an objective value of at least 1/α.

Proof. Let I be an instance of the two-value SantaClaus problem with OPT(I) ≥ 1 and vij ∈ {0, u, w}. We
assume w.l.o.g. that u ≤ w. We consider three exhaustive cases.

In the first case we assume that w < OPT(I)/α. Then, we can use the algorithm of Bezakova and
Dani [8] to compute in polynomial time a solution in which every player receives a total value of at least
OPT(I)− vmax = OPT(I)− w > (1− 1/α)OPT(I) ≥ OPT(I)/α, using α ≥ 2.

In the second case we assume that w ≥ OPT(I)/α and that there is an optimal solution for I in which every
player i receives a resource j of value vij = w. Then, we can essentially set u to 0 and compute a solution where
every player receives a resource of value w by solving a bipartite matching problem. Since every player receives
a value of at least w ≥ OPT(I)/α ≥ 1/α, we are done.

In the last case we assume that w ≥ OPT(I)/α and that in every optimal solution for I there is some player
i which does not receive a resource j of value vij = w. We can conclude that such a player must receive at least
b = ⌈1/u⌉ many resources j′ for which she has a value of vij′ = u, because OPT(I) ≥ 1. Then, we construct a new
instance I ′ by copying I and adjusting the resource values to w′ = 1 and u′ = 1/b. Observe that OPT(I ′) ≥ 1 and
that any solution for I ′ in which every player either receives a resource of value 1 or b resources of value 1/b gives
an objective value of at least 1. We can therefore define a collection of configurations C in which every player has
these two configurations. Then, we can use Lemma 2.3 (by noting that in the constructed Makespan instance
every job has either size 1 or 1/b) to compute a solution for I ′ in which every player receives a total value of at
least 1/α. Since u ≥ u′ and w ≥ OPT(I)/α, this means that we can use the same solution for instance I and
guarantee that every player receives a total value of at least 1/α.
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3 Reduction from restricted matroid Santa Claus to the two-value case

The goal of this section is to prove the following lemma, which allows us to heavily reduce restricted resource-
matroid SantaClaus instances to instances with only one matroid and one polymatroid.

Lemma 3.1. For any α ≥ 2, if there is a polynomial-time algorithm that, given an instance of restricted two-value
resource-matroid SantaClaus problem with one matroid of value v1 = ∞ and one polymatroid of value v2 = 1
and a number b ∈ N, finds a solution of value at least b or determines that there is no solution of value αb, then
there is also:

1. a polynomial-time α-approximation algorithm for (any instance of) the restricted two-value resource-matroid
SantaClaus problem and

2. a polynomial-time 2α-approximation algorithm for the restricted resource-matroid SantaClaus problem.

Before proving this lemma, we start this section with a rounding theorem which can be obtained by a variant
of standard arguments in the scheduling literature (see [30]). In this section, we will often refer to a standard
relaxation of the problem, called the assignment LP. In this LP, we have one variable xj(i) for each pair resource
j and player i. In the resource-matroid SantaClaus problem, the relaxation can be written as follows.∑

j∈R

xj(i) · vij ≥ T ∀i ∈ P

xj ∈ B(Pj) ∀j ∈ R

x ≥ 0 .

Remark that we do not assume that we are in the restricted assignment setting, as our rounding theorems will
apply even in the setting of unrelated resource values. In Appendix C we prove the equivalent statement of the
following theorem for the unrelated job-matroid Makespan problem.

Theorem 3.1. Given a fractional assignment x of resources to players which is feasible for the assignment LP
(with parameter T ) of some instance I of the unrelated resource-matroid SantaClaus problem, we can obtain,
in polynomial time, a feasible integral assignment of resources to players of value at least T −maxi∈P,j∈R vij.

Proof. For each player i, we order the resources in non-increasing order of value. We will now define σi(j) as
the index corresponding to the resource that appears in j-th position in that order defined for player i. By
definition we have that viσi(1) ≥ viσi(2) ≥ · · · ≥ viσi(n) for any player i. W.l.o.g. we also assume that viσi(n) = 0
for any player i. We denote the polymatroids associated to the resources as P1,P2, . . . ,Pn, corresponding to
the submodular functions f1, f2, . . . , fn. Given the fractional assignment x, we will create a feasible fractional
solution x′ to a certain polymatroid intersection problem. We define the two polymatroids using a bipartite graph
as follows. On the left-hand side, we have a set of vertices W with one vertex wj for each resource j, and on the
right-hand side we have a set of vertices U with one vertex uij for each player i and the resource j′ which appears
in jth position in the ordering of player i. The edge set will be denoted by E, and both polymatroids will have
E as a ground set. We set E = {(wσi(j), uij)}i∈P,j∈R ∪ {(wσi(j), ui(j+1))}i∈P,j∈R\{n}. For some edge e ∈ E, we
denote by ew the resource corresponding to its left-hand side vertex, and by eu the player corresponding to its
right-hand side endpoint. The first polymatroid P ′

1 will be associated with the submodular function

f1(S) :=

n∑
j=1

fj

 ⋃
e∈S:ew=j

eu

 .

The second polymatroid P ′
2 will be defined using the right-hand side vertices in our graph. Each vertex u ∈ U

will have some degree constraint d(u) and the submodular function f2 is simply defined as

f2(S) :=
∑

e=(w,u)∈S

d(u) .
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We define the degree constraints using the following process for each player i in instance I. Let us fix one player
i. We start with

d(ui1) =
⌊
xσi(1)(i)

⌋
,

and we define the remainder R1 := xσi(1)(i) − d(ui1) (for ease of notation we define R0 = 0). Then we define
recursively the degree constraint d(uij) and remainders as follows.

d(uij) :=
⌊
Rj−1 + xσi(j)(i)

⌋
, and

Rj := {Rj−1 + xσi(j)(i)} = Rj−1 + xσi(j)(i)−
⌊
Rj−1 + xσi(j)(i)

⌋
= Rj−1 + {xσi(j)(i)} −

⌊
Rj−1 + {xσi(j)(i)}

⌋
.

By construction, it is clear that the fractional assignment x in instance I can be transformed into a feasible
fractional solution to our polymatroid intersection problem. To see this, fix a player i. Then the first resource (in
the order defined by player i) can be assigned to vertex ui1 up to an extent of

⌊
xσi(1)(i)

⌋
, which is represented in

our graph as taking
⌊
xσi(1)(i)

⌋
copies of the edge (wσi(1), ui1). The remaining fraction of xσi(1)(i) can be assigned

to player i by taking the edge (wσi(1), ui2) fractionally by some amount {xσi(1)(i)}. Then we move on to the
second resource, and we take the edge (w2, ui2) by the maximal amount possible until the degree constraint on
vertex ui2 becomes tight. By construction, we see that there might be some leftover of the value xσi(2)(i) which is
precisely equal to the number R2 in our construction. We continue this assignment until the last resource. Note
that our definition of remainder Rj is precisely this small leftover of xσi(j)(i) that carries over to the edge going
to vertex ui(j+1) (note that this remainder is always less than 1). There is one slight caveat at the end is that
some small amount of the fractional assignment xσi(n)(i) might be thrown away, but as we will see, this does not
hurt our purpose because we assume that vσi(n) = 0.

Note that this fractional solution to our polymatroid intersection problem makes all the degree constraints
on the right-hand side tight. By integrality of the polymatroid intersection polytope (see Chapters 46-47 in [27])
there exists an integral solution which also makes all the degree constraints on the right-hand side tight (and
we can find it in polynomial time by finding the maximum cardinality multiset of edges which belongs to the
polymatroids intersection).

It is easy to see that this integral solution corresponds to an integral assignment of resources to players in
the instance I, in which each player i receives a value of at least

n∑
j=1

⌊
Rj−1 + xσi(j)(i)

⌋
vσi(j) .

Let us compute the difference in objective ∆i with the fractional solution. We have that

∆i ≤
n∑

j=1

(xσi(j)(i)−
⌊
Rj−1 + xσi(j)(i)

⌋
)vσi(j) + vσi(n) =

n∑
j=1

({xσi(j)(i)} −
⌊
Rj−1 + {xσi(j)(i)}

⌋
)vσi(j) .

Looking at each term individually, we notice that either
⌊
Rj−1 + {xσi(j)(i)}

⌋
= 0, or that

⌊
Rj−1 + {xσi(j)(i)}

⌋
=

1. In the first case the next remainder Rj is equal to Rj−1 + {xσi(j)(i)} < 1. In the second case, we have that

Rj = Rj−1 + {xσi(j)(i)} −
⌊
Rj−1 + {xσi(j)(i)}

⌋
= Rj−1 + {xσi(j)(i)} − 1 .

Let us denote by R′ the set of all indices where the second case happens. Then we can write

∆i ≤
n∑

j=1

{xσi(j)(i)}vσi(j) −
∑
j∈R′

vσi(j) .

Now note that if j /∈ R′, then {xσi(j)(i)} = Rj − Rj−1, and that if j ∈ R′ then {xσi(j)(i)} = 1 + Rj − Rj−1.
Using this observation, we obtain

∆i ≤
n∑

j=1

(Rj−Rj−1)vσi(j)+
∑
j∈R′

vσi(j)−
∑
j∈R′

vσi(j) ≤
n∑

j=1

(Rj−Rj−1)vσi(j) =

n−1∑
j=1

(vσi(j)−vσi(j+1))Rj ≤ vσi(1) ,

where we use the fact that R0 = vσi(n) = 0, and Rj ≤ 1 for all j.
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We finally prove Lemma 3.1.

Proof. We start by proving the first result of the lemma. Let u,w (with w ≥ u) be the two sizes of the instance
I, and let fu, fw be the associated submodular functions.

Now, we have three possible cases. If OPT(I)/α ≤ u, then it suffices to give at least one resource to any
player to obtain an α-approximate solution. This can be checked in polynomial time (see Chapter 42 in [27]). If
u < OPT(I)/α ≤ w, then, in an α-approximate solution, it suffices to give to each player either one resource of
value w or OPT(I)/(αu) resources of value u. We define a new instance I2 with one matroid of value v1 =∞ and
one polymatroid of value v2 = 1. The independent sets of the matroid are the sets of players which can be covered
by at least one resource of value w each in the original instance. The polymatroid is defined by the submodular
function f2(S) := fu(S). Clearly, in this case, we have that OPT(I2) ≥ OPT(I)/u, and a solution of value t in
instance I2 can immediately be translated into a solution of value min{OPT(I)/α, tu} in the original instance. So
an α-approximation on instance I2 gives us an α-approximation on the original instance. In the last case where
OPT(I)/α > w, we first assume without loss of generality that u,w are integers (by appropriate scaling). Then
we define a polymatroid P3 with the submodular function f3(S) := u · fu(S) + w · fw(S); this should be thought
of splitting the resources of value w (respectively u) into w (respectively u) individual resources of value 1 each.
The biggest b such that b ·E ∈ P3 (where E is the set of all players and b ·E is the |E| dimensional vector with all
entries equal to b) can be found in polynomial time, since we simply need to minimize a submodular function (see
Chapter 45 in [27]). This gives us a fractional solution to the original instance of objective value OPT(I). Using
Theorem 3.1, we can round (in polynomial time) this fractional solution into an integral solution of objective
value OPT(I) −max{u,w} ≥ OPT(I) · (1 − 1/α) ≥ OPT(I)/α (using α ≥ 2), which concludes the proof of the
first point of the lemma.

For the second point, by a standard guessing strategy (as explained in the beginning of Section 2), we
can assume that we know the optimum value OPT(I). We call a resource j heavy if vj ≥ OPT(I)/(2α),
and light otherwise (let H and L be the set of heavy and light resources respectively). We then define
an instance I ′ with one matroid of value ∞, whose independent sets are the sets of players which can be
covered by at least one heavy resource each (this is a matroid by the matroid union theorem see Chapter 42
in [27]). Again, assuming that all values vj are integers, we define one polymatroid of value 1 associated to the
submodular function f ′(S) :=

∑
j∈L vjfj(S). In this new instance, it is clear that OPT(I ′) ≥ OPT(I). Hence

an α-approximate solution to instance I ′ can be transformed into an α-approximate solution to instance I, in
which the heavy resources are assigned integrally, and the light resources fractionally. Using Theorem 3.1, we
can round this fractional assignment into and integral assignment of value at least OPT(I)/α − maxj∈L vj ≥
OPT(I)/α−OPT(I)/(2α) = OPT(I)/(2α).

4 Reductions between matroid allocation problems

We consider the restricted assignment setting of the matroid generalizations of SantaClaus and Makespan.
The main result here is Theorem 1.3, which we restate here for convenience.

Theorem 4.1. For any α ≥ 2, there exists a polynomial-time α-approximation algorithm for the restricted two-
value resource-matroid SantaClaus problem if and only if there exists a polynomial-time (2−1/α)-approximation
algorithm for the restricted two-value job-matroid Makespan problem.

We prove the theorem using the following two lemmas, one for each direction, and the same standard binary
search framework as in Section 2. The key ideas for constructing instances and for transforming solutions in these
reductions rely on polymatroid duality. Note that, by Proposition 1.1, we can w.l.o.g. assume that the number of
resources and jobs, respectively, is exactly two.

Lemma 4.1. Let α ≥ 2 and I be an instance of the restricted job-matroid Makespan problem with two jobs and
OPT(I) ≤ 1. Then we can compute an instance I ′ of the restricted resource-matroid SantaClaus problem with
two resources, such that, given an α-approximate solution for I ′, we can compute a solution for I with an objective
value of at most 2− 1/α.

Proof. Given an instance I with OPT(I) ≤ 1 of the restricted job-matroid Makespan problem with machines
E and two jobs with sizes p1, p2 ≥ 0 and polymatroids P1,P2, we construct an instance I ′ of the restricted
resource-matroid SantaClaus problem as follows.
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Let k1 = ⌊1/p1⌋ and let k2 = ⌊1/p2⌋. We first consider the polymatroids P ′
1 = {x ∈ P1 : x(e) ≤ k1 ∀e ∈ E}

and P ′
2 = {x ∈ P2 : x(e) ≤ k2 ∀e ∈ E}. Let f ′

1 and f ′
2 be the associated submodular functions of these

polymatroids. Since OPT(I) ≤ 1, any optimal solution xj ∈ B(Pj) satisfies xj(e) ≤ kj for all e ∈ E, and
therefore, xj ∈ B(P ′

j), for j ∈ {1, 2}. Thus, fj(E) = xj(E) = f ′
j(E). Let Pj be the dual polymatroid of P ′

j

with respect to the vector kj · E (the vector of ZE where all entries are equal to kj), for j ∈ {1, 2}. We compose
instance I ′ using players E and two resources with polymatroids P1,P2 and resource values p1, p2.

Let t = k1 · p1 + k2 · p2 − 1. We show that OPT(I ′) ≥ t. Fix an optimal solution for I which selects bases
x1 ∈ B(P1) and x2 ∈ B(P2). For each j ∈ {1, 2}, we define a vector xj with xj(e) = kj − xj(e) for all e ∈ E, and
conclude that xj ∈ B(Pj), because xj ∈ B(P ′

j). This means that x1 and x2 are a feasible solution for I ′. Using
OPT(I) ≤ 1, for every player e ∈ E it holds that

p1 · x1(e) + p2 · x2(e) = (1 + t)− (p1 · x1(e) + p2 · x2(e)) = (1 + t)−OPT(I) ≥ t,

showing that OPT(I ′) ≥ t.
We finally prove the stated bound on the objective value of an approximate solution. Fix an α-approximate

solution for I ′ which selects bases y1 ∈ P1 and y2 ∈ P2. We construct an approximate solution yj ∈ B(Pj) for
instance I by setting yj(e) = kj − yj(e) for every e ∈ E and j ∈ {1, 2}. The construction of the dual polymatroid

Pj implies yj ∈ B(P ′
j) for j ∈ {1, 2}. We further have yj ∈ B(Pj), because P ′

j ⊆ Pj and yj(E) = f ′
j(E) = fj(E).

Moreover, for every machine e ∈ E it holds that

p1 · y1(e) + p2 · y2(e) = (1 + t)− (p1 · y1(e) + p2 · y2(e)) ≤ (1 + t)− 1

α
·OPT(I ′) ≤ 1 + t− t

α
.

Since by construction t ≤ 1, we have t− t/α ≤ 1− 1/α, which implies that the makespan of the constructed
solution (y1, y2) is at most 2− 1/α.

The second direction can be shown with the same proof idea and some additional tweaks specific to the
direction.

Lemma 4.2. Let α ≥ 2 and I be an instance of the restricted resource-matroid SantaClaus problem with two
resources and OPT(I) ≥ 1. Then we can compute an instance I ′ of the restricted job-matroid Makespan problem
with two jobs, such that, given a (2− 1/α)-approximate solution for I ′, we can compute a solution for I with an
objective value of at least 1/α.

Proof. Let I be an instance of the restricted resource-matroid SantaClaus problem with two resources with
associated polymatroids P1,P2 and values v1, v2 ≥ 0 such that OPT(I) ≥ 1. By Lemma 3.1 we can assume that
we are given a simplified case. For convenience, we slightly reformulate it as follows: given v1 = 1 (instead of ∞),
v2 = 1/b ≤ v1 (instead of 1) for b ∈ N, and OPT(I) ≥ 1, find a solution of value at least 1/α.

Consider the polymatroids P ′
1 = {x ∈ P1 : x(e) ≤ 1 ∀e ∈ E} and P ′

2 = {x ∈ P2 : x(e) ≤ b ∀e ∈ E}. Let P1

be the dual polymatroid of P ′
1 with respect to the vector 1 · E, and let P2 be the dual polymatroid of P ′

2 with
respect to the vector b · E. We compose an instance I ′ of job-matroid Makespan using machines E, one job of
size p1 = 1 with polymatroid P1 and one job of size p2 = 1/b with polymatroid P2.

We now show that OPT(I ′) ≤ 1. Fix an optimal solution for I which selects bases x1 ∈ B(P1) and x2 ∈ B(P2).
Since OPT(I) ≥ 1, we have v1 · x1(e) + v2 · x2(e) ≥ 1 for every e ∈ E. Since v1 = 1 and v2 = 1/b, this implies
x1(e)+(1/b) ·x2(e) ≥ 1. Our goal is to dualize bases of P ′

1 and P ′
2 to obtain bases of P1 and P2, which are feasible

for I ′. To this end, we first construct vectors x′
1 ∈ P ′

1 and x′
2 ∈ P ′

2 such that x′
1(e) + (1/b) · x′

2(e) ≥ 1 for all
e ∈ E. This can be done by restricting x1 to values of at most 1 and x2 to values of at most b, and then selecting
any bases which dominate these intermediate vectors. Now, we define x1(e) = 1−x′

1(e) and x2(e) = b−x′
2(e) for

all e ∈ E. By the construction of P1 and P2, this solution is feasible for I ′, i.e., xj ∈ B(Pj) for j ∈ {1, 2}. We
further have for every machine e ∈ E

x1(e) +
1

b
· x2(e) = 2−

(
x′
1(e) +

1

b
· x′

2(e)

)
≤ 1,

showing that OPT(I ′) ≤ 1.
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We finally prove the stated bound on the objective value of an approximate solution. Fix a (2 − 1/α)-
approximate solution for I ′ which selects bases y1 ∈ B(P1) and y2 ∈ B(P2). We construct an approximate
solution for I by defining y′1(e) = 1− y1(e) and y′2(e) = b− y2(e) for every e ∈ E, meaning that y′j ∈ B(P ′

j), and
then choose an arbitrary basis yj ∈ B(Pj) which dominates y′j , for j ∈ {1, 2}. We have for every player e ∈ E

y1(e) +
1

b
· y2(e) ≥ y′1(e) +

1

b
· y′2(e) = 2−

(
y1(e) +

1

b
· y2(e)

)
≥ 2−

(
2− 1

α

)
·OPT(I ′) ≥ 1

α
.

Since v2 = 1/b and v1 = 1, we conclude v1 · y1(e) + v2 · y2(e) ≥ 1/α for every e ∈ E, which implies that the
value of the constructed solution y1 and y2 is at least 1/α.

5 Local search algorithm

In this section we present our algorithm for Theorem 1.4 that finds an (8 + ϵ)-approximation for the restricted
resource-matroid SantaClaus problem and a (4 + ϵ)-approximation in the case of two values.

We will show in Lemma 3.1 that it suffices to solve the following problem with α = 4 + ϵ. Given a matroid
M = (E, I) and a polymatroid P over the same set of elements as well as some b ∈ N, find some IM ∈ I and
y ∈ P such that for every i ∈ E we have i ∈ IM or y(i) ≥ b, or determine that no solution exists for αb. Before
we move to the algorithm, we define some specific notation used throughout the section.

Notation. Recall that for some X ⊆ E, we write b · X as the vector y ∈ ZE with y(i) = b for i ∈ X and
y(i) = 0 for i /∈ X. Contracting a set X ⊆ E of a matroid M defines a new matroid M/X obtained from
restricting the elements to E \ X and defining the rank function as r(Y | X) = r(Y ∪ X) − r(X). Naturally,
the independent sets of the contracted matroid form all the sets that together with any independent set in S are
independent in the original matroid. We use contraction primarily to fix some elements in the matroid. We need
a similar notion for the polymatroid P defined by the submodular function f . However, while a single element
i ∈ E has rank function r(i) ≤ 1 in a matroid, the value f(i) could be arbitrarily large. In particular, contracting
a set using f(Y | X) we may reserve more resources for X than intuitively necessary (recall we only need to
cover elements with the polymatroid b times). Hence, we need to use a more sophisticated approach here. First,
consider the polymatroid P ′ = {y ∈ P : y(i) ≤ b ∀i ∈ X}, i.e., a restriction on the multiplicity of each element in
X within the polymatroid. Let, f ′ be the submodular function defining P ′. After this transformation we can use
f ′(Y | X) without the aforementioned issues. We introduce the short notation

f(Y | b ·X) = f ′(Y | X) .

Note that f(Y | b ·X) behaves as one would expect in the sense of decreasing marginal returns, see Lemma 5.1.
We will define both r(Y | X) and f(Y | b · X) on all X ⊆ E instead of only Y ⊆ E \ X. More precisely,
r(Y | X) = r(Y ∪ X) − r(X) = r((Y \ X) ∪ X) − r(X) = r(Y \ X | X) gives a natural extension although
clearly the elements in X behave trivially. Similar to this, we extend f(Y | b · X) to Y ∩ X ̸= ∅ by defining
f(Y | b ·X) = f(Y \X | b ·X).

Framework. We move to a further variation of the problem, which resembles an augmentation framework
similar to matroid partition problems, where we are given a partial solution that we then extend. The algorithm
itself is defined using recursion with the following interface.

Input. Matroid M = (E, I) with rank function r, polymatroid P ⊆ ZE with function f , both over the same
elements, and a number b ∈ N.
Further, disjoint sets IM ∈ I, b · IP ∈ P, B0 ⊆ E. Finally, a partial order ≺ on B0.

Output. Either an augmented solution I ′M ∈ I and b ·I ′P ∈ P such that I ′M ∪̇I ′P ⊇ IM ∪IP and |I ′M ∩B0| ≥ ϵ2|B0|
or “failure”.

In case failure is returned, we provide a certificate that proves that no I∗M , I∗P can exist with I∗M ∪ I∗P ⊇
IM ∪ IP , I

∗
M ∈ I and the stronger conditions αb · I∗P ∈ P for α = 4 +O(ϵ) and |I∗M ∩B0| ≥ 3ϵ|B0|. Details

on the certificate follow in the analysis.

The partial order ≺ affects which elements of B0 the algorithm tries first to add to IM . The precise
guarantees on the output are subtle, but important inside the recursion, see proof of Lemma 5.5.
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We can apply this variant to solve our previous polymatroid problem as follows: we initialize IP as the set of
all elements i ∈ E that have r(i) = 0. If b · IP /∈ P it is clear that the optimum is smaller than b. Assuming
b · IP ∈ P we set I = ∅ and now extend IM ∪ IP one element at a time by calling the procedure above with
B0 = {i} for some element i /∈ IM ∪ IP . Each time IM and IP will be changed, but end up covering an additional
element. Repeating this at most |E| times we either have a solution that covers all elements or some element i
cannot be added, which certifies that no solution exists with i covered by the matroid. In this case we alter the
rank function to r(X)← r(X − i), setting in particular r(i)← 0. We then restart the whole procedure.

We will now describe how to solve this variant of the problem. First, we assume without loss of generality
that IM ∪ IP ∪ B0 = E by simply dropping irrelevant elements from the input. As stated above, we want to
add many elements of B0 to IM . In the trivial case that r(B0 | IM ) ≥ ϵ2|B0|, we add greedily as many elements
of B0 as possible to IM (while maintaining IM ∈ I), which will result in |IM ∩ B0| ≥ ϵ2|B0|, and we terminate
successfully. Otherwise, we will have to remove elements from IM before we can add sufficiently many elements
of B0 to IM . To this end, we will carefully construct a set of addable elements A ⊆ IM , where the notion has
historical reasons and comes from the idea that we want to “add” A to IP . The procedure for creating A is
deferred to later and here we summarize only its important properties. The existence of A will be guaranteed by
the algorithm. Along with A we also create the set C with A ⊆ C ⊆ IM , which contains more elements of IM
that are relevant for adding B0 to IM (but not all of them could be added to A). The relevant properties of A
and C are as follows.

1. It holds that 2b ·A ∈ P, which means that in principle A could be added to IP (and removed from IM ). Note
that this does not take into account potential conflicts with other elements currently in IP . Also remark
that we are intentionally overprovisioning here, by using 2b instead of b.

2. Set A is maximal within C regarding the previous property. More specifically, f(i | 2b · A) < 2b for all
i ∈ C \A.

3. If we remove many elements of A from IM , we are able to add many elements of B0 to IM . Specifically, we
require that for every R ⊆ A with |R| ≥ ϵ|A| we have

r(B0 | IM \R) ≥ ϵ2|B0| .

We note that while this property initially holds, only a weaker version is maintained as the algorithm
progresses. For more details see Lemma 5.5.

4. Set C should contain almost all elements that block elements of B0 from being added to IM . Formally,
r(B0 | C) ≤ 2ϵ|B0|. In particular, a solution that covers many elements of B0 with the matroid needs to
cover a substantial amount of elements in C with the polymatroid.

Our new goal is to move many elements of A to IP , which may not be possible immediately because of conflicting
elements currently in IP . We first characterize these elements: Define the blocking elements B as the set of all
i ∈ IP such that f(i | b · (IP ∪A− i)) < b. It is intuitively clear that elements not in B are not relevant to adding
A: assume we remove some elements of IP and add some elements of A to it. Then afterwards all elements not
in B can easily be added back to IP (if they were removed), since each of their marginal values will still be at
least b.

When an element in A can be added to IP , we will not add it right away. Instead we will only place it in a set
of immediately addable elements AI . Only when we have enough of these elements to successfully terminate, we
will add them to IP . This is mainly for simplicity, i.e., to keep structures as static as possible during execution.
We now repeatedly perform the first possible operation from the following:

1. If f(i | b · (IP ∪AI)) ≥ b (equivalently, b · (IP ∪AI + i) ∈ P) for some i ∈ A \AI , add i to AI .

2. If |AI | ≥ ϵ|A|, add AI to IP , remove it from IM , and greedily add as many elements of B0 as possible to
IM , in the order given by ≺. We can then terminate successfully (Lemma 5.5).

3. If |B| < ϵ|B0|, return “failure”.

4. If none of the above applies, we will recurse on B, which means that we try to move many elements of B to
IM so that they can be removed from IP , hopefully allowing us to move elements of A to AI . The details
of the recursion follow towards the end of the section.
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Construction of addable elements. We construct a series of disjoint sets A1, A2, . . . as follows: assume
that A1, A2, . . . , Aℓ−1 have already been created. We initialize Aℓ = ∅. Then repeat the following until exhaustion:
if there exists an i ∈ IM \ (A1 ∪A2 ∪ · · · ∪Aℓ) with r(i | B0 ∪ IM \Aℓ − i) = 0 and

f(i | 2b · (A1 ∪A2 ∪ · · · ∪Aℓ)) ≥ 2b ,

then we add i to Aℓ. If |Aℓ| < ϵ|B0| we terminate with A = A1 ∪ A2 ∪ · · · ∪ Aℓ−1. Otherwise, we continue with
the next set. When the construction of A is finalized, we define

C = B0 ∪A ∪ {i ∈ IM \A : f(i | 2b ·A) < 2b} .

Recursion. We will denote the input of the recursion using prime next to the symbol, e.g. E′, B′
0, etc. The

goal of the recursion is to move many elements of B to IM . On the other hand, we want to keep our structures
within B0, A, and C largely intact. To this end, we first contract C from the matroid, which means that the
recursion cannot remove elements of C from IM . It may not be intuitively clear why this would be bad for us,
but removing many elements of C does not necessarily allows us to add many elements of B0 (comparable to
Property 3 of the set A) for arbitrary elements of C. In any case, we want to avoid the complications related to
such changes in C. Hence, we set

E′ = E \ C ,

I ′M = IM \ C , and

r′(X) = r(X | C) ∀X ⊆ E′

which defines a new matroidM′ = (E′, I ′). Regarding the polymatroid, we remove B from IP so as to produce
an input where sets B′

0, I
′
M , and I ′P are disjoint. However, by contracting b · B from the polymatroid we make

sure that we can add it back to the modified solution after the recursion has returned (at least for those elements
that were not moved into IM ). Furthermore, we want to avoid that the recursion moves elements to IP that
hinder A from being added to the polymatroid. Hence, we contract b ·A as well. This is achieved by setting

I ′P = IP \B and

f ′(X) = f(X | b · (A ∪B)) ∀X ⊆ E′ .

From f ′ we obtain the new polymatroid P ′. Finally, we define

B′
0 = B0 ∪B

and extend ≺ by giving all elements of B lower priority than B0. Intuitively, it does not hurt us to include B0

in B′
0. If the recursion manages to move elements to B0, this is only good for us. We prove in Lemma 5.7 that

this indeed forms a valid input of the problem. If the recursive call returns failure, we return failure as well.
Otherwise, we update as follows. Let I ′′M and I ′′P be the output of the recursion. First, we add back the previously
removed C:

IM ← C ∪ I ′′M .

As for IP , we want to add back B except for those elements that were covered with the matroid in the recursive
call. Thus,

IP ← (B \ I ′′M ) ∪ I ′′P .

In Lemma 5.6 we show that the new IM , IP constitute again a feasible solution. If the returned set I ′′M satisfies
|B0 ∩ I ′′M | ≥ ϵ2|B0| we terminate successfully. Otherwise, it must hold that |B ∩ I ′′M | ≥ ϵ2|B|, which intuitively
means we made big progress in freeing B and is used in the running time analysis. Since IP has changed, B
may no longer correspond to its initial definition. Hence, we update B to again reflect the set of all i ∈ IP with
f(i | b · (IP ∪A− i)) < b according to the new set IP .

5.1 Analysis
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General properties of matroids and submodular functions.

Lemma 5.1. Let g : E → Z≥0 be monotone submodular with g(∅) = 0, X ′ ⊆ X ⊆ E, and h′ < h. Then

g(Y | h ·X ′) ≥ g(Y | h ·X) for all Y ⊆ E \X and

g(Y | h′ ·X) ≥ g(Y | h ·X) for all Y ⊆ E \X .

Proof. Recall that g(Y | h · X) is derived by first constructing a new monotone submodular function g′

corresponding to the polymatroid defined by g but with entries of X bounded by h. For the first inequality,
let g′′ be the corresponding function with X ′ instead of X. Then

g(Y | h ·X ′) = g′′(Y | X ′) = g′′(Y ∪X ′)− g′′(X ′)

≥ g′(Y ∪X ′)− g′(X ′) = g′(Y | X ′) ≥ g′(Y | X) = g(Y | h ·X) .

Here we use that g′′(X ′) = g′(X ′). For the second inequality, let g′′′ be the submodular function for h′ instead
of h. Let Q be the polymatroid corresponding to g. Then there exists some y′′′ ∈ Q with supp(y′′′) ⊆ X,
y′′′(i) ≤ h′ for all i ∈ E, and y′′′(X) = g′′′(X). We define y′ accordingly, except for g′ instead of g′′′. Here
we may assume, by augmentation property of the polymatroid that y′(i) ≥ y′′′(i) for all i ∈ E. The value
g(Y | h′ · X) = g′′′(Y | X) is simply the largest element (by sum) in the polymatroid defined by restricting Q
to E \ X and replacing the submodular function by g′′′(Y ′) = g(Y ′ ∪ X) − y′′′i (X). It is clear that this is at
least as big as g(Y | h · X) = g′(Y | X), since the corresponding polymatroid here has a submodular function
g′(Y ′) = g(Y ′ ∪X)− y′i(X) that is smaller or equal to g′′′ everywhere.

Lemma 5.2. Let g : E → Z≥0 be monotone submodular with g(∅) = 0 and X ⊆ E. Define Y = {i ∈ X : g(i |
h · (X − i)) < h}. Then for every i ∈ X we have g(i | h · (Y − i)) < h if and only if i ∈ Y .

Proof. For any i ∈ X with g(i | h · (Y − i)) < h we have g(i | h · (X − i)) < h by Lemma 5.1. This proves
one direction. For the other direction, let i ∈ X with g(i | h · (Y − i)) ≥ h. Further, let Q be the polymatroid
corresponding to g and let y ∈ Q with supp(y) ⊆ Y − i and y(j) ≤ h for all j ∈ E. Further, choose y such that
y(Y − i) is maximized. Since g(i | h · (Y − i)) ≥ h, we can extend y to y′ which is equal for all j ̸= i and has
y′(i) = h. Now for any i′ ∈ X \ Y , since g(i′ | h · Y ) ≥ g(i′ | h · (X − i′)) ≥ h we can repeat the same trick
and increase the value of y′(i′) to h as well. It is easy to see that this can be continued to obtain y′′ ∈ Q with
y′′(j) = h for all j ∈ X \ (Y − i) and y′′(j) = y(j) for all j ∈ Y − i.

It is clear that y′′ when restricted to X − i maximizes y′′(X − i) over all elements of Q with support X − i
and upper bound h: It maximizes the sum already on Y − i and all other components are obviously the largest
possible. Together with the fact that y′′ with y′′(i) = h is in Q, this implies that g(i | h · (X − i)) ≥ h.

Lemma 5.3. Let g : E → Z≥0 be monotone submodular with g(∅) = 0 and X ′ ⊆ X ⊆ E. Further, let
g(i | h · (X − i)) < h for all i ∈ X ′. Then g(X ′) ≤ h|X| and strict inequality holds whenever X ′ ̸= ∅.

Proof. We use an induction over |X ′|. For X ′ = ∅ the claim obviously holds. Now consider X ′ ̸= ∅ and let i ∈ X ′.
There must be some Y ⊆ X with i ∈ Y such that g(Y ) < h|Y |: assume otherwise and let Q be the polymatroid
corresponding to g. Let z ∈ Q with z(j) ≤ h for all j ∈ E and z(i) = 0, maximizing z(E). It can easily be checked
that z′ with z′(j) = z(j) for j ̸= i and z′(i) = h is also in Q. This however implies that g(i | h · (X − i)) ≥ h.

Having established that g(Y ) < h|Y | for some Y ∋ i, we use the induction hypothesis on X \ Y , X ′ \ Y and
g′(Y ′) := g(Y ′ | Y ). It follows that g(X ′ \ Y | Y ) ≤ h|X \ Y | and therefore

g(X ′) ≤ g(Y ) + g(X ′ \ Y | Y ) < h|Y |+ h|X \ Y | = h|X| .

This concludes the proof.

Basic properties and invariants of the data structures. Note that after A,C,B, and AI are initially
created, we never change A,C, IM ∩C or IP ∩C. The only dynamic sets are B, AI , IM \C, and IP \C. Hence,
for properties that rely solely on the fixed elements, it suffices to verify them at the time they were created.
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Furthermore, the only place that makes potentially dangerous changes to B, IM \C, and IP \C is the recursion.
In the remainder, “at all times” means that a property should hold between any two of the four main operations
that are performed repeatedly.

We will now verify the properties of the set of addable elements. Notice that Properties (1) and (2), that is,
2b ·A ∈ P and f(i | 2b ·A) < 2b for all i ∈ C \A, hold trivially by construction.

Lemma 5.4. For the set of addable elements A and set C we have that r(B0 | C) ≤ 2ϵ|B0|.

Proof. Let A1, A2, . . . , Aℓ be the sets created by the procedure. Consider the time that C is created. Here, it
holds that r(B0 | IM ) < ϵ2|B0| ≤ ϵ|B0|. Now assume towards contradiction that r(B0 | C) > 2ϵ|B0|. Thus, we
can find some X ⊆ B0 with |X| = r(B0 | C) and C ∪X ∈ I. After finalizing A, for all i ∈ IM \ (C ∪Aℓ) we have
r(i | B0 ∪ IM \ Aℓ − i) = 1. Thus, X ∪ IM \ Aℓ ∈ I, which can be seen by adding to C ∪X the elements from
IM \ (Aℓ ∪C) one at a time (each having marginal value 1). Applying the matroid augmentation property on IM ,
we can find a set Y ⊆ B0 such that Y ∪ IM ∈ I and

|Y | = |X ∪ IM \Aℓ| − |IM | ≥ |X| − |Aℓ| > ϵ|B0| ,

a contradiction.

Lemma 5.5. For the set of addable elements A and set C we have that r(B0 | IM \ R) ≥ ϵ2|B0| − |B0 ∩ IM | for
every R ⊆ A with |R| ≥ ϵ|A|.

Proof. We will first prove the statement for the time when A was created, but then we need to show that it also
holds later. Let A1, A2, . . . , Aℓ be the sets created by the procedure and recall that A = A1 ∪ · · · ∪ Aℓ−1 and
Aj ≥ ϵB0 for all j < ℓ. Thus, there must be some Aj , j < ℓ, with |R ∩ Aj | ≥ ϵ|Aj | ≥ ϵ2|B0|. For IM at the time
of construction it holds that

r(B0 ∪ IM \ (R ∩Aj)) ≥ r(B0 ∪ IM \Aj) = r(B0 ∪ IM ) ≥ |IM | .

This is because Aj is constructed greedily from elements that do not decrease the rank. Hence,

r(B0 | IM \R) ≥ r(B0 | IM \ (R ∩Aj))

= r(B0 ∪ IM \ (R ∩Aj))− r(IM \ (R ∩Aj)) ≥ |IM | − |IM |+ |R ∩Aj | ≥ ϵ2|B0| .

We will now study the effects of IM changing throughout the algorithm. Essentially, when an element of B0 is
added to IM then r(B0 | IM \ R) may decrease by 1, otherwise it does not change. Note that we can view the
changes made by the algorithm (or its recursive calls) to IM as a sequence of single insertions or deletions. More
precisely, there exists a sequence of sets Let I1, I2, . . . , Ik ∈ I, where Ik is the current state of IM that we want
to analyze, I1 is the initial state, and Ih+1 is derived from Ih either by deletion or addition of a single element.
Further, whenever Ih+1 = Ih + i for some i /∈ Ih, then we know that Ih + j /∈ I for all j /∈ Ih with j ≺ i. Finally,
once an element of B0 is added to some Ih, it remains in IM , i.e., it is also in Ih+1, . . . , Ik. All of these properties
are observations that follow easily from the definition of the algorithm.

Let 1 ≤ h < k, R ⊆ C ⊆ Ih, S ⊆ E \Ih such that |R| ≥ |S| and Ih \R∪S ∈ I. Assume further that Ih+s /∈ I
for all s ∈ S. Then Ih+1 \R∪S ∈ I as well: if Ih+1 is derived by deletion of an element, this follows immediately.
Now assume that Ih+1 = Ih + i. Since Ih + i ∈ I and Ih \ R ∪ S ∈ I, by matroid augmentation property there
exists some j ∈ (Ih + i) \ (Ih \ R ∪ S) = R + i with Ih \ R ∪ S + j ∈ I. If j = i we are done, otherwise we get a
contradiction: suppose that Ih \ (R − j) ∪ S ∈ I. Then we can apply the matroid augmentation property to Ih
to find some s ∈ S with Ih + s ∈ I.

Now consider a subsequence Ih, Ih+1, . . . , Ig where no element of B0 is added. Then if Ih \R∪S ∈ I it follows
that Ig \ R ∪ S ∈ I. Notice that as we have shown earlier, for every R ⊆ A ⊆ C with |R| ≥ ϵ|A| there exists
some S1 ⊆ B0 such that |S1| ≥ ϵ2|B0| and I1 \ R ∪ S1 ∈ I. Let Ih be the first time that an element of B0 is
inserted into IM . Then by previous arguments Ih−1 \ R ∪ S1 ∈ I. Since Ih extends Ih−1 by only one element,
by matroid augmentation property Ih \ R ∪ S2 ∈ I for some S2 ⊆ S1 with |S2| = |S1| − 1. We can repeat this
argument and since only |Ik ∩B0| many times an element from B0 is added, we will finally obtain a set Sk with
|Sk| = |S1| − |B0 ∩ Ik| ≥ ϵ2|B0| − |B0 ∩ Ik| and Ik \R ∪ Sk ∈ I; thus proving the lemma.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2850



Lemma 5.6. At all times, IM and IP are disjoint, IM ∈ I, and b · IP ∈ P.

Proof. The only modifications to IM are IM ← C ∪ I ′′M through recursion, where I ′′M is independent in the
contracted matroidM/C and greedy additions of elements before terminating. Both of these operations clearly
maintain IM ∈ I.

For IP , we will argue the stronger statement that at all times b · (IP ∪ AI) ∈ P, which also implies that the
operation of adding elements from AI to IP will maintain IP ∈ P. The property that b · (IP ∪ AI) ∈ P is by
definition of the algorithm maintained when adding elements to AI . Consider now the operation IP ← (B\I ′′M )∪I ′′P
performed by the recursion, where each element i ∈ I ′′P satisfies f(i | b · (I ′′P ∪ A ∪ B − i)) ≥ b. We assume that
before the recursive call we have b · (IP ∪ AI) ∈ P and, in particular, b · (B ∪ AI) ∈ P. Thus, because of
the marginal values of all elements in I ′′P , it follows immediately that b · (AI ∪ B ∪ I ′′P ) ∈ P and, in particular,
b · (AI ∪ (B \ I ′′M ) ∪ I ′′P ) ∈ P. Note that (B \ I ′′M ) ∪ I ′′P is equal to IP after the recursion. Since these are the only
places where IP is changed, this completes the proof.

Lemma 5.7. The input E′, B′
0, I

′
M , I ′P ,M′,P ′ created for the recursion is feasible. More concretely,

1. B′
0, I

′
M , I ′P ⊆ E′ are disjoint,

2. I ′M ∈ I ′, and

3. b · I ′P ∈ P ′.

Proof. The only non-obvious statement is b · I ′P ∈ P ′. Here, notice that f ′(X) = f(X | b · (A ∪ B)) and for each
i ∈ I ′P we have f(i | b · (A ∪ IP − i) ≥ b, since i /∈ B. Starting with X = ∅ and adding each element of I ′P one at
a time, it is easy to see that the marginal values f ′(i | b ·X) are always least b.

Lemma 5.8. For all i ∈ A ∪B \AI we have f(i | b · (A ∪B − i)) < b.

Proof. Consider the time B was last updated. By definition we have f(i | b · (A∪ IP − i)) < b if and only if i ∈ B
for all i ∈ IP . Further, for every i ∈ A \AI we have f(i | b · (A ∪ IP − i)) ≤ f(i | b · IP ) < b.

Let X = {i ∈ A∪ IP : f(i | b · (A∪ IP − i) < b}. Then by the previous observations, A∪B \AI ⊆ X ⊆ A∪B.
By Lemma 5.2 it follows that f(i | b · (A ∪B − i)) ≤ f(i | b · (X − i)) < b for all i ∈ A ∪B \AI .

We will now prove that a recursion significantly decreases the number of blocking elements.

Lemma 5.9. Let B′ be the set of blocking elements after a recursion has returned and assume that the algorithm
did not immediately terminate. Denote by B the blocking elements before the recursion. Then B′ ⊆ B. Moreover,
|B′| ≤ (1− ϵ2)|B|.

Proof. Let i ∈ I ′P \B, where again the prime denotes the state after the recursion. Then f(i | b · (A∪ I ′P − i)) ≥ b
(using the definition of the submodular function f ′ of the recursion). Therefore, i /∈ B′. Since |I ′M ∩ B| ≥ ϵ2|B|
and such elements will not appear in I ′P it follows immediately that |B′| ≤ (1− ϵ2)|B|.

Lemma 5.10. At all times we have |B| > (1− 2ϵ)|A|

Proof. Recall that for all i ∈ A ∪ B we have f(i | b · (A ∪ B − i)) < b unless i ∈ AI , see Lemma 5.8. Thus,
from Lemma 5.3 it follows that f((A \ AI) ∪ B) < b|A ∪ B|. Furthermore, 2b · A ∈ P and |AI | < ϵ|A|, which
implies that f((A \AI) ∪B) ≥ f(A \AI) ≥ 2b|A \AI | ≥ (2− 2ϵ)b|A|. Putting both inequalities together, we get
|A ∪B| > (2− 2ϵ)|A|, which simplifies to |B| > (1− 2ϵ)|A|.

Termination with failure. In the case that our algorithm returns failure, we need to prove that there does
not exist a (slightly stronger) solution. This proof is in the form of a certificate. We will start with some intuition
and background on simpler certificates that do not work.

First, it is unclear how one would generalize the configuration LP beyond the partial matroid generalization
of Davies et al. [15], since it heavily relies on the matching structure of small resources. But even worse, we show
that already in a special case for which the configuration LP is still meaningful, its integrality gap is large; hence
it is not helpful. Consider the following instance (which appeared already in [7]). We have a first set E of m
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players, and a set S of m − 1 resources. For each player i ∈ E, there is an additional set Ei of m players and
an additional set Si of m + 1 resources. Each player i ∈ E has valuation m for all the resources in S, valuation
1 for all the resources in Ei, and valuation 0 for the remaining resources. For any i ∈ E, each player in Ei has
valuation m for the resources in Si, and valuation 0 for other resources. It was showed in [7] that in this example
the configuration LP will give an optimal objective value of m for this instance, while it is clear that the integral
optimum is at most 1. Indeed, there are only m− 1 resources in S, hence at least one player i from E will need
to take resources from Si. But Si contains only m+ 1 resources while m players in Ei need to take one resource
each from the corresponding set Si. Interestingly, this example can be captured by our polymatroid variant. We
have universe E and the uniform matroid of rank |E| − 1 (i.e. r(X) = |X| for any X ̸= E, and r(E) = |E| − 1),
and f(X) = |X|, which models that a set of |X| players in E1 can be assigned a maximum of |X| resources from
the set

⋃
i∈E Si. In the matroid problem, the players in

⋃
i∈E Ei only appear implicitly. One may also derive

f by defining a natural polymatroid that assigns the items in
⋃

i∈E Si and from which we then contract the
players of

⋃
i∈E Ei. As stated above, the configuration LP does not give us a good lower bound (or certificate of

infeasibility) in this case. Another way to find a certificate would be, in the spirit of matroid partition, to try to
find a set Z, for which r(Z) + f(Z)/b < |Z|, where r is the rank function of the matroid and f the submodular
function corresponding to the polymatroid. Although this would prove infeasibility of a solution of value b, it is
not sufficient as seen in the example above. As previously detailed, it is clear that no solution of value more than
1 exists. On the other hand, r(Z)+f(Z)/|Z| ≥ r(Z) = |Z| for all Z ̸= E and r(E)+f(E)/|E| = |E|−1+1 ≥ |E|.
Hence, the certificate above is also not sufficient to rule out a solution of value |E| = m.

To overcome this issue, we develop a new idea, which first introduce in the following simplified way. Let
Z2 ⊆ E with f(Z2) ≤ b · |Z2|, in the example above we can take Z2 = ∅. Further, let Z1 ⊇ Z2 have a not too large
rank of r(Z1) < |Z1| − |Z2|/2 and small marginal values for each element, that is, f(i | Z2) < b for all i ∈ Z1 \Z2.
In the example above, take Z1 = E. We claim that this constitutes a proof that no solution of value 3b exists.
Suppose that for IP ⊆ Z1 we have that 3b · IP is in the polymatroid. Then

2b · |IP | ≤ 3b · |IP | −
∑

i∈IP \Z2

f(i | Z2) ≤ f(Z2) ≤ b · |Z2| ,

where we use that 3b · |IP | ≤ f(IP ) ≤ f(Z2) +
∑

i∈IP \Z2
f(i | Z2). It follows that |IP | ≤ |Z2|/2, but because of

its rank the matroid cannot cover all remaining elements. In the formal definition of the certificate we need a
more complicated variant. This is mainly for efficiency reasons: in order to achieve polynomial running time, the
algorithm uses some parameter ϵ and this forces us to work with weaker conditions.

Definition 5.1. A certificate of infeasibility consists of two (possibly empty) sets Z2 ⊆ Z1 ⊆ E \B0 with

1. r(B0 | Z1) < 2ϵ|B0|,

2. r(Z1) ≤ |Z1| − (0.5− 2ϵ)|Z2|+ ϵ|B0|,

3. f(i | b · (Z2 − i)) < b for at least a (1− ϵ) fraction of elements in Z2,

4. f(i | 2b · Z2) < 2b for all i ∈ Z1 \ Z2

We briefly compare this definition to the simpler variant before. First, Property 3 implies that f(Z ′
2) ≤ b · |Z2| for

some large subset Z ′
2 ⊆ Z2 by Lemma 5.3; hence very similar of the simpler variant. Property 2 is weaker than

the simpler variant by the additive term of ϵ|B0|. This, however, is needed so that we arrive at a certificate also
when the algorithm cannot make much process. To compensate for it we introduce Property 1. This property
implies that if we wanted to cover 3ϵ|B0| many elements of B0 with the matroid, then the number of elements the
matroid covers in Z1 must be at most r(Z1)− ϵ|B0|, i.e., canceling out the increase in the bound of Property 2.
Together we obtain a certificate that shows that not many elements of B0 can be covered by the matroid, which
is formalized below.

Lemma 5.11. If there exists a certificate of infeasibility then there cannot be two sets I∗M ∪ I∗P ⊇ E \ B0 with
I∗M ∈ I, αb · I∗P ∈ P, and |B0 ∩ I∗M | ≥ 3ϵ|B0|, where α = 4 +O(ϵ).
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Proof. Let I∗M ∪ I∗P ⊇ E \B0 with I∗M ∈ I, αb · I∗P ∈ P. Let Z ′
2 ⊆ Z2 be the elements with f(i | b · (Z2 − i)) ≥ b.

Then by (3) we have |Z ′
2| ≤ ϵ · |Z2| and from Lemma 5.3 it follows that f(Z2 \ Z ′

2) ≤ b · |Z2|. We first bound

αb|I∗P ∩ (Z1 \ Z ′
2)| ≤ f(I∗P ∩ (Z1 \ Z ′

2))

≤ f(Z2 \ Z ′
2) + f(I∗P ∩ (Z1 \ Z2) | Z2 \ Z ′

2)

≤ f(Z2 \ Z ′
2) + f(I∗P ∩ (Z1 \ Z2) | 2b · (Z2 \ Z ′

2))

≤ f(Z2 \ Z ′
2) + 2b|Z ′

2|+ f(I∗P ∩ (Z1 \ Z2) | 2b · Z2)

≤ f(Z2 \ Z ′
2) + 2b|Z ′

2|+
∑

i∈I∗
P∩(Z1\Z2)

f(i | 2b · Z2)

≤ f(Z2 \ Z ′
2) + 2b|Z ′

2|+
∑

i∈I∗
P∩(Z1\Z′

2)

f(i | 2b · Z2) .

From this it follows that

b(α− 2)|(Z1 \ Z ′
2) ∩ I∗P | ≤

∑
i∈I∗

P∩(Z1\Z′
2)

(αb− f(i | 2b · (Z2 − i))) ≤ 2ϵb|Z2|+ f(Z2 \ Z ′
2) ≤ (1 + 2ϵ)b|Z2| .

Consequently, |(Z1 \ Z ′
2) ∩ I∗P | ≤ (1 + 2ϵ)/(α− 2) · |Z2|. Thus,

|Z1 ∩ I∗M | ≥ |Z1| − |(Z1 \ Z ′
2) ∩ I∗P | − |Z ′

2| ≥ |Z1| −
1 + 2ϵ+ (α− 2)ϵ

α− 2
|Z2| ≥ r(Z1)− ϵ|B0| ,

where the last inequality holds because of Property (2) for α = 4 +O(ϵ) and ϵ sufficiently small. Thus,

|B0 ∩ I∗M | ≤ r(B0 | I∗M ∩ Z1) = r(B0 ∪ (I∗M ∩ Z1))− r(I∗M ∩ Z1)

≤ r(B0 ∪ Z1)− r(Z1) + ϵ|B0| = r(B0 | Z1) + ϵ|B0| < 3ϵ|B0| ,

which concludes the proof.

Next we will prove that whenever the algorithm returns failure, there exists such a certificate.

Lemma 5.12. If |B| < ϵ|B0| then there exists a certificate that proves infeasibility.

Proof. We set Z2 = A ∪B and Z1 = C ∪B. Then by Lemma 5.4 we have

r(B0 | Z1) ≤ r(B0 | C) < 2ϵ|B0| .

Further,

r(Z1) ≤ r(C) + r(B) = |C|+ ϵ|B0| ≤ |Z1|+ ϵ|B0| − 0.5|B| − 0.5|B|
≤ |Z1|+ ϵ|B0| − 0.5|B| − (0.5− ϵ)|A| ≤ |C1| − (0.5− 2ϵ)|Z2|+ 2ϵ|B0| .

Here we use that |B| ≥ (1 − 2ϵ)|A|, see Lemma 5.10. It follows from Lemma 5.3 and Lemma 5.1 that
f(i | b · (Z2 − i)) ≤ f(i | b · (A ∪ B − i)) < 2b for each i ∈ C2 \ AI and |AI | ≤ ϵ|A| ≤ ϵ|Z2| since otherwise
we would have terminated successfully.

Finally, f(i | 2b ·C2) ≤ f(i | 2b ·A) < 2b for all i ∈ C \A follows immediately from the definition of C.

Lemma 5.13. When a recursive call returns failure, then there exists a certificate that proves infeasibility.

Proof. Assume that a recursive call has failed. Let Z ′
1, Z

′
2 be the certificate returned by it. We set Z1 = Z ′

1∪C∪B
and Z2 = Z ′

2 ∪A ∪B. Then by Lemma 5.4,

r(B0 | Z1) ≤ r(B0 | C) < 2ϵ|B0| .
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Further,

r(Z1) = r(Z ′
1 ∪ C ∪B)

= r(Z ′
1 | C) + r(C) + r(B | Z ′

1 ∪ C)

≤ r′(Z ′
1) + |C|+ r′(B | Z ′

1)

≤ |Z ′
1| − (0.5− 2ϵ)|Z ′

2|+ 2ϵ|B|+ |C|+ ϵ|B0|
= |Z1| − (0.5− 2ϵ)|B| − 0.5|B| − (0.5− 2ϵ)|Z ′

2|+ ϵ|B0|
≤ |Z1| − (0.5− 2ϵ)|Z2|+ ϵ|B0| .

Moreover, for all i ∈ C2 \ AI it holds that f(i | b · (Z2 − i)) ≤ f(i | b · (A ∪ B − i)) < 2b Similarly, for a 1 − ϵ
fraction of Z ′

2 it holds that f(i | b · (Z2 − i)) ≤ f(i | b · (Z ′
2 − i)) < b. Since |AI | < ϵ|A| ≤ ϵ|A ∪B| Property (3) is

satisfied. Likewise f(i | 2b · Z2) ≤ f(i | 2b · Z ′
2) < 2b for all i ∈ Z ′

1 \ Z2 and f(i | 2b · Z2) ≤ f(i | A) < 2b for all
i ∈ C \ Z2. Thus, also the last property holds.

5.2 Running time We are going to bound only the number of nodes in the recursion tree. It is clear that
the overhead of operations outside the recursive call is polynomially bounded. To this end, we focus on the sets
B0 and B. Initially, the set B created in the algorithm will have size at most n. Then with every recursive
call it decreases by a factor of (1 − ϵ2), see Lemma 5.9, but never below ϵ|B0| (else, the algorithm terminates
immediately).

For a fixed instance, let T (k) be the maximum number of nodes in the recursion tree of the algorithm over
all inputs B0, X, Y where |B0| ≥ 1/(1 − ϵ2)k. Then T (k) is monotone decreasing, i.e., T (k′) ≤ T (k) for k′ ≥ k,
simply because the set over which the maximum is taken is smaller. Let ℓ = ⌈log1/(1−ϵ2)k(n)⌉. Then,

T (k) ≤ 1 +

ℓ∑
i=k+1

T (i) and T (ℓ) = 1 .

Here, the sum starts at k+1, since the smallest size of B′
0 of the recursion satisfies |B′

0| ≥ (1+ϵ)|B0| ≥ |B0|/(1−ϵ2).
The numbers T (ℓ), T (ℓ− 1), T (ℓ− 2), . . . , T (1) are similar to the Fibonacci series (except for the addition of 1 for
the current node) and it can easily be shown by induction that T (k) ≤ 2ℓ−k ≤ 2ℓ ≤ nOϵ(1) for all k.

6 Final remarks

For the two notorious open problems in scheduling theory, we prove Makespan to be at least as difficult as
SantaClaus; more precisely, a better-than-2 approximation for Makespan would imply an O(1)-approximation
for SantaClaus. In the two-value case both problems appear equivalent w.r.t. approximability. The obvious
open question is whether there is also a Makespan-to-SantaClaus reduction (for restricted assignment or the
general case). Here we note that for restricted assignment Makespan, all efforts to refine the local search method
in order to give a better-than-2 approximation have failed so far. Also with our new reduction techniques it
seems that it would require additional ideas to handle this problem. By the reductions, our local search method
generalizes all previously known polynomial-time local search results for the two problems (up to constants) and
yields the first approximation algorithm for a new matroid SantaClaus variant, where items are allocated to
the basis of a (poly-)matroid. We hope that this makes it clearer where the power and limitations of the method
are.

Finally, we comment on an alternative matroid scheduling variant with matroid constraints on the items
allocated to a specific machine/player. In the machine-matroid Makespan problem, each machine would be
given a matroid on the jobs. All jobs must be assigned such that each machine receives an independent set of its
matroid. The player-matroid SantaClaus can be defined similarly.

Kawase et al. [23] consider such matroid partition problems for various objective functions showing complexity
results. Further, two special-matroid examples for Makespan have been studied, namely, bag-constrained
scheduling [14,17] (single partition matroid) and scheduling with capacity constraints [11] (uniform matroids). The
approximability lower bound Ω((log n)1/4) by [14] holds for the restricted assignment setting and even translates
to an inapproximability bound for machine-matroid Makespan for identical machines with machine-dependent
matroids. We are not aware of any similarly strong lower bounds for the SantaClaus variant.
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A Combining polymatroids of the same value

Proposition 1.1. For any α ≥ 1, if there exists a polynomial-time α-approximation algorithm for restricted job-
matroid Makespan (resource-matroid SantaClaus) with h jobs (resources), then there exists a polynomial-time
α-approximation algorithm for restricted job-matroid Makespan (resource-matroid SantaClaus) with pj resp.
vj ∈ {w1, . . . , wh} and w1, . . . , wh ≥ 0.

Proof. In the following, we use the notation [h] := {1, . . . , h}. Let I be an instance of the restricted job-matroid
Makespan problem with machines E and h distinct processing times p1, . . . , ph. Let Jℓ, ℓ ∈ [h], denote the set
of jobs with processing times pℓ. Further, let Pℓ

j with ℓ ∈ [h] and j ∈ Jℓ denote the corresponding polymatroids

over E and let f ℓ
j be the associated submodular function.

We construct an instance I ′ of the restricted job-matroid Makespan problem with h jobs by using the
same set of machines E and creating the polymatroids Pℓ for ℓ ∈ [h] with the montone submodular function
fℓ(S) =

∑
j∈Jℓ

f ℓ
j (S) for every subset S ⊆ E. Note that Pℓ =

∑
j∈Jℓ
Pℓ
j [27]. For ℓ ∈ [h], the goal in instance

I ′ is to find vectors xℓ ∈ B(Pℓ) such that maxe∈E

∑
ℓ∈[h] pℓ · xℓ(e) is minimized. We prove that this reduction

preserves the approximation factor.
Consider a solution of instance I that selects the bases xℓ

j for job j ∈ Jℓ with ℓ ∈ [h] and consider the vectors

x′
ℓ with x′

ℓ(e) =
∑

j∈Jℓ
xℓ
j(e) for all e ∈ E. Using again the fact that Pℓ =

∑
j∈Jℓ
Pℓ
j we have x′

ℓ ∈ Pℓ for all ℓ ∈ [h].

In particular, x′
ℓ(E) =

∑
e∈E

∑
j∈Jℓ

xℓ
j(e) =

∑
j∈Jℓ

f ℓ
j (E) = fℓ(E), so x′

ℓ is a basis of Pℓ. Thus, (x′
1, . . . , x

′
h) is a

feasible solution for instance I ′. Furthermore,

OPT(I ′) ≤ max
e∈E

∑
ℓ∈[h]

x′
ℓ(e) · pℓ = max

e∈E

∑
ℓ∈[h]

∑
j∈Jℓ

xℓ
j(e) · pℓ = OPT(I).

Consider some solution (y′1, . . . , y
′
h) to instance I ′, i.e., y′ℓ ∈ B(Pℓ) and fℓ(E) = y′ℓ(E) for all ℓ ∈ [h]. We

construct a solution to I by decomposing each y′ℓ, ℓ ∈ [h], into bases yℓj ∈ B(Pℓ
j ) such that y′ℓ(e) =

∑
j∈Jℓ

yℓj(e)
holds for all e ∈ E. As OPT(I ′) ≤ OPT(I), this implies that the reduction preserves the approximation factor.
If such decomposition would not exist for some ℓ ∈ [h], then, by construction of the submodular function fℓ, we
would arrive at a contradiction to fℓ(E) = y′ℓ(E).

To find the decomposition for an ℓ ∈ [h] in polynomial time, consider the polymatroids P̂ℓ
j which are just

copies of the original polymatroids Pℓ
j on pairwise disjoint copies Êj of the ground set E. For each ℓ ∈ [h], we

decompose the solution y′ℓ of instance I
′ into bases of the copy polymatroids, which then implies a decomposition

into bases of the original polymatroids. For each e ∈ E, let Ce denote the set of copies of e introduced by the
ground set copies. We want to find a basis ŷℓj for every j ∈ Jℓ such that

∑
ê∈Ce

ŷℓj(ê) = y′ℓ(e) holds for all e ∈ E

and ℓ ∈ [h]. For an element e ∈ E and ℓ ∈ [h], consider the polymatroid X ℓ
e on the ground set Ce implied by

bases B(X ℓ
e ) = {x ∈ ZCe

≥0 : x(Ce) = y′ℓ(e)} and let X ℓ denote the union of these polymatroids. Furthermore, let

P̂ℓ denote the union of the polymatroids P̂ℓ
j . The largest element in the intersection of X ℓ and P̂ℓ gives us the

decomposition. We can compute the largest element in the intersection in polynomial time using algorithms for
polymatroid intersection (cf. e.g. [27, Chapter 41]).

The statement for resource-matroid SantaClaus can be shown with the same reduction and proof; only the
inequality OPT(I ′) ≤ OPT(I) trivially changes to OPT(I ′) ≥ OPT(I).

B Santa Claus with polynomially many configurations

Lemma 2.2. For every ϵ > 0 and a given instance I of SantaClaus with OPT(I) ≥ 1, we can construct a
rounded instance I ′ with a collection of configurations C such that the number of configurations for each player is
polynomial in the input size of I and OPTC(I

′) ≥ 1/(1 + ϵ).
Further, every solution for I ′ of objective value T is a solution for I with objective value at least T .

Proof. Let ϵ > 0 be a sufficiently small constant and κ = ⌈1/ϵ3⌉. Given a SantaClaus instance I with the set P
of m players, the set R of n resources and OPT(I) ≥ 1, we construct the SantaClaus instance I ′ by executing
the following steps.

1. Use the same set of players and resources as in I.
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2. Round all resource values vij down to the closest power of 1/(1 + ϵ). That is, we round 1/(1 + ϵ)ℓ−1 ≥
vij ≥ 1/(1 + ϵ)ℓ to v̄ij = 1/(1 + ϵ)ℓ. If vij ≥ 1, then we set v̄ij = 1. Furthermore, we round all vij with
vij < 1/((1+ϵ)n) to zero. In summary, each v̄ ∈ T is either a power of 1/(1+ϵ) of value at least 1/((1+ϵ)n)
or 0.

Next, we construct the configurations for the rounded instance I ′ by executing the following steps. Since
these steps will reduce the number of possible configurations per player to a polynomial, an algorithm creating
the configurations can just compute them via enumeration.

3. For each player i ∈ P , we create the set Ci of configurations and restrict the set to configurations c such
that, for every value type v̄ ∈ T , either c(v̄) = 0, c(v̄) = ⌈(1+ ϵ)ℓ⌉ or c(v̄) = ⌊(1+ ϵ)ℓ⌋ for some ℓ ∈ N0 with
(1 + ϵ)ℓ ≤ n.

4. Let v̄1 ≥ . . . ≥ v̄τ be the rounded value types in T . We partition T into κ value classes T1, . . . , Tκ
where Tℓ = {v̄ℓ+s·κ : s = 0, 1, . . .}. We further restrict the set of configurations Ci for a player i ∈ P to
configurations c which satisfy for every 1 ≤ ℓ ≤ κ and for every v̄, v̄′ ∈ Tℓ with v̄ > v̄′ that either c(v̄) < c(v̄′)
or c(v̄) = 0 or c(v̄′) = 0. That is, the function values of value types v̄ ∈ Tℓ of one value class that actually
occur in a configuration (i.e., have c(v̄) > 0) increase with decreasing value v̄ ∈ Tℓ.

We first argue that, for each player i, the number of configurations in Ci is polynomial in the input size.
Because of the second step, the number of value types in I ′ is in Oϵ(log n). By the third step, the number of
distinct function values c(v̄) over all configurations c ∈ Ci and all value types v̄ ∈ T is in Oϵ(log n) as well.

By step 4, we can represent the entries of c ∈ Ci which correspond to the same value class Tℓ in terms of
a vector with Oϵ(log n) entries such that all non-zero entries strictly increase in value (each entry of the vector
corresponds to a value type v̄ ∈ Tℓ, in decreasing order, and the entry values represent the corresponding function
values c(v̄)). We can represent such a vector by the set of entries that have a non-zero value and by the set of
non-zero values that occur in the vector. Since there are at most 2Oϵ(logn) different sets of non-zero values that
can occur in the vector and at most 2Oϵ(logn) different sets of non-zero entries, the number of such vectors is
2Oϵ(logn) · 2Oϵ(logn) ⊆ nOϵ(1). Since the total number of value classes is constant, and there is a simple rule to
compose the vectors of every class to a vector for all value types T , the total number of vectors which represent
every valid configuration is polynomial in the size of I.

Next, we prove the approximation factor. Let I ′ denote the rounded instance constructed by the first two
steps. Furthermore, let C′ denote the collection of configurations that is created by only executing the third step of
the construction and let C denote the final collection of configurations. We separately prove OPTC′(I ′) ≥ 1/(1+ϵ)3

and OPTC(I
′) ≥ OPTC′(I ′)/(1 + ϵ). Together, these inequalities imply OPTC(I

′) ≥ 1/(1 + ϵ)4. Then, for any
sufficiently small ϵ′ > 0, we can choose ϵ = ϵ′/5 and conclude OPTC(I

′) ≥ 1/(1 + ϵ′).
We first show OPTC′(I ′) ≥ 1/(1 + ϵ)3. Consider some optimal solution for I. For a player i, let Ai denote

the resources that are assigned to i in the optimal solution. Clearly v(Ai) ≥ 1. Discarding all resources in Ai

with value smaller than 1/((1+ ϵ)n) reduces the value of Ai by a factor of at most 1+ ϵ. Rounding the remaining
resource values down to powers of 1 + ϵ reduces the value by another factor of 1 + ϵ. To make sure that the
remaining resources in Ai with their rounded values match a configuration in C′i, we might have to remove a 1+ ϵ
fraction of the resources for each value type from Ai. This reduces the value of Ai by another factor of 1+ ϵ. The
remaining value is at least 1/(1+ ϵ)3. By doing this for every player i, we obtain a solution to I ′ that matches C′
with an objective value of at least 1/(1 + ϵ)3, which implies OPTC′(I ′) ≥ 1/(1 + ϵ)3.

Finally, we prove OPTC(I
′) ≥ OPTC′(I ′)/(1 + ϵ). To that end, fix an optimal solution for I ′ among those

solutions that match C′. Consider some player i and let c′i denote the configuration that is selected for player i in
the optimal solution for I ′. We argue that we can find a configuration ci ∈ Ci that

(i) has a total value that is at least a 1/(1 + ϵ) fraction of the value of c′i and

(ii) satisfies ci(v̄) ≤ c′i(v̄) for all v̄ ∈ T .

This gives us a feasible solution for I ′ that matches C and has an objective value of at least OPTC′(I ′)/(1 + ϵ)
and, thus, proves the statement.

We start by building a configuration ci independently for every value class Tℓ.
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First, we iteratively construct a subset Sℓ ⊆ Tℓ of value types as follows.
Start with the largest v̄ ∈ Tℓ such that c′i(v̄) > 0 and add v̄ to Sℓ. Then, find the largest v̄′ ∈ Tℓ with v̄ > v̄′

and c′i(v̄) < c′i(v̄
′). Add v̄′ to Sℓ and repeat from v̄′ until we do not find another value type to add. Based

on Sℓ, define configuration ci as ci(v̄) = c′i(v̄) if v̄ ∈ Sℓ and ci(v̄) = 0 otherwise. By choice of the sets Sℓ, the
configuration ci is contained in Ci and satisfies (ii).

It remains to prove that ci also satisfies (i). Fix an arbitrary value type v̄j ∈ Sℓ and let v̄j′ denote the next
smaller value type in Sℓ. Recall that the rounded value types are indexed in decreasing order and let s be the
integer such that j′ = j + κ · (s+ 1). If v̄j is already the smallest value type in Sℓ, we set s to the largest integer
such that ℓ+ κ · s ≤ τ .

We show

(B.1) ci(v̄j) · v̄j ≥
1

1 + ϵ
·

s∑
s′=0

c′i(v̄j+s′·κ) · v̄j+s′·κ.

If this inequality holds for all v̄j ∈ Sℓ, and for all 1 ≤ ℓ ≤ τ , then (ii) follows.
To prove the inequality, observe that, by choice of set Sℓ, all integers 0 ≤ s′ ≤ s satisfy c′i(v̄j+s′·κ) ≤ c′i(v̄j).

Furthermore, v̄j+s′·κ = v̄j/(1 + ϵ)κ·s
′
by the rounding of the value types. This gives us

s∑
s′=0

c′i(v̄j+s′·κ) · v̄j+s′·κ ≤ c′i(v̄j) ·
s∑

s′=0

v̄j+s′·κ = ci(v̄j) · v̄j ·
s∑

s′=0

1

(1 + ϵ)κ·s′

≤ ci(v̄j) · v̄j ·
1

1− 1
(1+ϵ)κ

(B.2)

By further using

κ ≥ 1 + ϵ

ϵ2
≥ 1

ϵ
· 1

ln(1 + ϵ)
≥

ln(1 + 1
ϵ )

ln(1 + ϵ)
= log1+ϵ

(
1 + ϵ

ϵ

)
,

it is not hard to see that (B.2) is at most ci(v̄j) · v̄j · (1 + ϵ), and thus, implies (B.1). This concludes the proof of
OPTC(I

′) ≥ OPTC′(I ′)/(1 + ϵ).

C Proof of Theorem 1.5

In the job-matroid Makespan problem, the assignment LP can be written as follows, where we have one variable
xj(i) for each pair job j and machine i.∑

j∈J

xj(i) · pij ≤ T ∀i ∈M

xj ∈ B(Pj) ∀j ∈ J

xj(i) = 0 ∀j ∈ J s.t. pij > T

x ≥ 0 ,

where T ≥ 0 is some given makespan bound. We note the subtlety in the assignment LP for the job-matroid
Makespan problem (compared to the assignment LP for the resource-matroid SantaClaus problem given in
Section 3), where we have an additional constraint for the jobs j with big processing time on some specific
machine i. This is sometimes referred to as “parametric pruning” and already appears in the original proof
in [25].

Theorem C.1. Given a fractional assignment x of jobs to machines which is feasible for the assignment LP (with
parameter T ) of some instance I of the unrelated job-matroid Makespan problem, we can obtain, in polynomial
time, a feasible integral assignment of jobs to machines of makespan at most T + maxi∈M,j∈J,xj(i)>0 pij. This
implies that we can find in polynomial time a feasible integral solution of makespan at most 2OPT(I).

Proof. The proof here is very similar to the proof of Theorem 3.1. We repeat it here for completeness. For
each machine i, we order the jobs in non-increasing order of processing time on machine i, and we denote σi(j)
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the index corresponding to the job that appears in j-th position in that order. By definition we have that
piσi(1) ≥ piσi(2) ≥ · · · ≥ piσi(n) for any machine i. W.l.o.g. we also assume that piσi(n) = 0 for any machine i.

We denote the polymatroids associated to the jobs as P1,P2, . . . ,Pn, corresponding to the submodular
functions f1, f2, . . . , fn. Given the fractional assignment x, we will create a feasible fractional solution x′ to
a certain polymatroid intersection problem. We define the two polymatroids using a bipartite graph as follows.
On the left-hand side, we have a set of vertices W with one vertex wj for each job j, and on the right-hand
side we have a set of vertices U with one vertex uij for each machine i and the job appearing in jth position in
the order σi. The edge set will be denoted by E, and both polymatroids will have E as a ground set. We set
E = {(wσi(j), uij)}i∈M,j∈J ∪{(wσi(j), ui(j−1))}i∈M,j∈J\{1} (note the slight change here compared to Theorem 3.1).
For some edge e ∈ E, we denote by ew the job corresponding to its left-hand side vertex, and by eu the machine
corresponding to its right-hand side endpoint. The first polymatroid P ′

1 will be associated with the submodular
function

f1(S) :=

n∑
j=1

fj

 ⋃
e∈S:ew=j

eu

 .

The second polymatroid P ′
2 will be defined using the right-hand side vertices in our graph. Each vertex u ∈ U

will have some degree constraint d(u) and the submodular function f2 is simply defined as

f2(S) :=
∑

e=(w,u)∈S

d(u) .

We define the degree constraints using the following process for each machine i in instance I. We start with

d(ui1) =
⌈
xσi(1)(i)

⌉
,

and we define the remainder R1 := d(ui1) − xσi(1)(i). Then we define recursively the degree constraint d(uij)
(j ≥ 2) and remainders as follows.

d(uij) :=
⌈
xσi(j)(i)−Rj−1

⌉
, and

Rj :=
⌈
xσi(j)(i)−Rj−1

⌉
− (xσi(j)(i)−Rj−1) =

⌈
{xσi(j)(i)} −Rj−1

⌉
− ({xσi(j)(i)} −Rj−1) .

It is easy to see that the solution x to the assignment LP can be transformed into a feasible fractional solution
to our polymatroid intersection problem. Similar to the proof of Theorem 3.1, the remainder Rj is defined to be
exactly the quantity by which we can select the edge (wσi(j), ui(j−1)) in our fractional solution to the polymatroid
intersection problem.

Note that this fractional solution to our polymatroid intersection problem is such that we have a basis of the
polymatroid P ′

1 (the left-hand side polymatroid). By integrality of the polymatroid intersection polytope (see
Chapters 46-47 in [27]) there exists an integral solution which is also a basis in P ′

1 (and we can find it in polynomial
time by finding the maximum cardinality multiset of edges which belongs to the polymatroids intersection).

It is easy to see that this integral solution corresponds to an integral assignment of jobs to machines in the
instance I, in which each machine i receives a load of at most

n∑
j=1

⌈
xσi(j)(i)−Rj−1

⌉
pσi(j) .

Let us compute the difference in objective ∆i with the fractional solution. We have that

∆i ≤
n∑

j=1

(
⌈
xσi(j)(i)−Rj−1

⌉
− xσi(j)(i))pσi(j) =

n−1∑
j=1

(
⌈
xσi(j)(i)−Rj−1

⌉
− xσi(j)(i))pσi(j)

=

n−1∑
j=1

(
⌈
{xσi(j)(i)} −Rj−1

⌉
− {xσi(j)(i)})pσi(j) ,
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using pσi(n) = 0. Looking at each term individually, we notice that either
⌈
{xσi(j)(i)} −Rj−1

⌉
= 0, or that⌈

{xσi(j)(i)} −Rj−1

⌉
= 1. In the first case the next remainder Rj is equal to Rj−1 − {xσi(j)(i)}. In the second

case, we have that
Rj = 1 +Rj−1 − {xσi(j)(i)} ⇐⇒ {xσi(j)(i)} = 1 +Rj−1 −Rj .

Let us denote by J ′ the set of all indices where the second case happens. Then we can write

∆i ≤
∑
j∈J′

pσi(j) −
n∑

j=1

{xσi(j)(i)}pj =
∑
j∈J′

pσi(j) −
∑
j∈J′

pσi(j) −
n∑

j=1

(Rj−1 −Rj)pσi(j) =

n∑
j=1

(Rj −Rj−1)pσi(j)

=

n−1∑
j=1

(pσi(j) − pσi(j+1))Rj ≤ pσi(1) ,

where we use the fact that R0 = pσi(n) = 0, and Rj ≤ 1 for all j.

Theorem 1.5 can be easily obtained by guessing the optimum value makespan T and using Theorem C.1.
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